Today's Hours: 8:00am - 10:00pm

Search

Filter Applied Clear All

Did You Mean:

Search Results

  • Article
    Trosko JE, Chang CC.
    Q Rev Biol. 1978 Jun;53(2):115-41.
    An integrative theory is proposed in which environmental carcinogenesis is viewed as a process by which the genetic control of cell division and differentiation is altered by carcinogens. In this theory, carcinogens include physical, chemical, and viral "mutagens," as well as chemical and viral gene modulators. Existing explanations of carcinogenesis can be considered either as somatic mutation theories or as epigenetic theories. Evidence seems to support the hypothesis that both mutations and epigenetic processes are components of carcinogenesis. The mutational basis of cancer is supported by the clonal nature of tumors, the mutagenicity of most carcinogens, high mutation frequencies in cells of cancer-prone human fibroblasts lacking DNA repair enzymes, the correlation of in vitro DNA damage and in vitro mutation and transformation frequencies with in vivo tumorigenesis, age-related incidences of various hereditary tumors, and the correlation between photoreactivation of DNA damage and the biological amelioration of UV-induced neoplasms. Since both mutagens and gene modulators can be carcinogenic it may be that carcinogens affect genes which control cell division. An integration of the mutation and epigenetic theories of cancer with the "two-stage" theory and Comings's general theory of carcinogenesis is proposed. This integrative theory postulates that carcinogens can affect regulatory genes which control a series of "transforming genes." A general hypothesis is advanced that involves a common mechanism of somatic mutagenesis via error-prone repair of DNA damage which links carcinogenesis, teratogenesis, atherosclerosis and aging. Various concepts are presented to provide a framework for evaluating the scientific, medical, and social implications of cancer.
    Digital Access Access Options