Today's Hours: 12:00pm - 6:00pm

Search

Filter Applied Clear All

Did You Mean:

Search Results

  • Article
    Chen Y, Wang X, Cao C, Wang X, Liang S, Peng C, Fu L, He G.
    Oncotarget. 2017 Nov 28;8(61):104193-104205.
    Raf and extracellular signal-regulated kinases (ERK) are both important therapeutic targets in the mitogen-activated protein kinase (MAPK) pathway, and play crucial roles in the apoptosis resistance of breast cancer cells. In the present study, cytotoxic and apoptosis-inducing activities of the Raf/ERK dual inhibitor CY-9d were found to be restricted in triple negative breast cancer (TNBC) cells compared with ER/PR-positive cells. Based on the analysis of differentially expressed proteins using a quantitative proteomic iTRAQ method and bioinformatics analysis, HSP90 was found to identify as a potential mediator between Raf and ERK in TNBC cells. Western blotting and RNA interference suggested that down-regulated IQGAP1 can attenuate the routine Raf/MEK/ERK cascade and recruit HSP90 as a bypass pathway. Simultaneous treatment with the HSP90 inhibitor and CY-9d at sub-therapeutic doses was found to produce synergistic therapeutic and apoptosis-inducing effects in TNBC cells. Moreover, CY-9d was also found to suppress breast cancer growth, inhibit the activation of Raf/ERK, and induce mitochondrial apoptosis in vivo without remarkable toxicity. These results support the combination of HSP90 and Raf/ERK inhibitors as a potential target therapeutic strategy with enhanced tumor growth suppression, downstream pathway blockade, and greater induction of apoptosis.
    Digital Access Access Options