ArticleKim YH, Kim KH, Szulejko JE, Parker D.
Sensors (Basel). 2013 Jun 20;13(6):7939-78.
The classes and concentrations of volatile organic compounds (VOC) released from fresh and decaying strawberries were investigated and compared. In this study, a total of 147 strawberry volatiles were quantified before and after nine days of storage to explore differences in the aroma profile between fresh strawberries (storage days (SRD) of 0, 1, and 3) and those that had started to decay (SRD = 6 and 9). In terms of concentration, seven compounds dominated the aroma profile of fresh strawberries (relative composition (RC) up to 97.4% by mass, sum concentration): (1) ethyl acetate = 518 mg∙m⁻³, (2) methyl acetate = 239 mg∙m⁻³, (3) ethyl butyrate = 13.5 mg∙m⁻³, (4) methyl butyrate = 11.1 mg∙m⁻³, (5) acetaldehyde = 24.9 mg∙m⁻³, (6) acetic acid = 15.2 mg∙m⁻³, and (7) acetone = 13.9 mg∙m⁻³. In contrast, two alcohols dominated the aroma profile of decayed samples (RC up to 98.6%): (1) ethyl alcohol = 94.2 mg∙m⁻³ and (2) isobutyl alcohol = 289 mg∙m⁻³. Alternatively; if the aroma profiles are re-evaluated by summing odor activity values (ΣOAV); four ester compounds ((1) ethyl butyrate (6,160); (2) ethyl hexanoate (3,608); (3) ethyl isovalerate (1,592); and (4) ethyl 2-methylbutyrate (942)) were identified as the key constituents of fresh strawberry aroma (SRD-0). As the strawberries began to decay; isobutyl alcohol recorded the maximum OAV of 114 (relative proportion (RP) (SRD = 6) = 58.3%). However, as the decay process continued, the total OAV dropped further by 3 to 4 orders of magnitude--decreasing to 196 on SRD = 6 to 7.37 on SRD = 9. The overall results of this study confirm dramatic changes in the aroma profile of strawberries over time, especially with the onset of decay.