Today's Hours: 8:00am - 6:00pm

Search

Filter Applied Clear All

Did You Mean:

Search Results

  • Article
    Sun SN, Urbassek HM.
    Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Nov;84(5 Pt 2):056315.
    Using molecular-dynamics simulation, we investigate the fragmentation behavior of droplets after collision with a wall. We demonstrate that the ratio of the impact to the cohesive energy E(coh) of the droplet is the key quantity characterizing the droplet fragmentation process. To show this both van der Waals-bonded Ar and N(2) droplets and polar H(2)O droplets are studied. If the impact energy per molecule E<(0.35-0.4)E(coh), the droplet is reflected without fragmenting. Beyond that impact energy fragmentation of the droplet abruptly starts. At E=E(coh), the fragmentation process already results in a fine dispersal of the droplet into daughter droplets; the maximum fragment contains only less than 4% of the initial droplet mass and around one-third of the droplet has been shattered into isolated molecules. The disintegration process continuously increases with collision energy. These findings are relevant for the process of droplet fragmentation as used in the method of impact desolvation of electrosprayed microdroplets mass spectrometry.
    Digital Access Access Options