Today's Hours: 12:00pm - 6:00pm

Search

Filter Applied Clear All

Did You Mean:

Search Results

  • Article
    Strehlow K, Nickenig G, Roeling J, Wassmann S, Zolk O, Knorr A, Böhm M.
    Am J Physiol. 1999 11;277(5):H1701-7.
    The molecular events governing salt-sensitive hypertension are currently unknown. Because the renin-ANG system plays a central role in blood pressure regulation and electrolyte balance, it may be closely involved in the phenomenon of salt sensitivity. Therefore, we examined the effect of a high-salt diet (8%) and a low-salt diet (0.4%) on ANG II-caused vascular constriction and ANG II type 1 (AT(1)) receptor expression in aorta, brain, and kidney of Dahl S (salt-sensitive) and Dahl R (salt-resistant) rats by means of radioligand binding assays and quantitative PCR. NaCl diet at 8% led to a significant increase of blood pressure in Dahl S but not in Dahl R rats. High-sodium intake caused a profound decrease of ANG II-induced aortic vasoconstriction in both Dahl R and Dahl S rats. The underlying mechanism was a downregulation of aortic AT(1) receptor density and AT(1) receptor mRNA. AT(1) receptor mRNA was downregulated to 57.8% in Dahl R and 59.0% in Dahl S rats by an 8% NaCl diet compared with a 0.4% NaCl diet (P < 0.05). There was a similar decrease in aortic AT(1) receptor density. Additionally, AT(1) receptor mRNA was also downregulated in the kidney but upregulated the brain of Dahl R and S rats on a high-salt diet. Thus high NaCl intake causes organ-specific AT(1) receptor regulation in Dahl R and in Dahl S rats despite the differential blood pressure regulation in these animal models in response to a high-salt diet. These findings suggest that the regulation of vascular AT(1) receptors is influenced by numerous factors such as the renin-ANG system and obviously by various other events that are currently only partly understood.
    Digital Access Access Options