Today's Hours: 10:00am - 6:00pm

Search

Filter Applied Clear All

Did You Mean:

Search Results

  • Book
    Bidyut Kumar Sarmah, Basanta Kumar Borah, editors.
    Summary: This book serves the teachers, researchers and the students as a handy and concise reference as well as guidebook while designing and planning for use of the advanced technologies for crop improvement. The content of the book is designed to cover the latest genome engineering techniques for crop improvement. The conventional breeding has got its limitations such as non-availability of desired genes within the genepool. In many cases, breeding has been highly used and it has nearly reached its highest limit so far as the productivity and production of crops are concerned. However, with increasing need of food and decreasing resources, including water, land, labour, etc., to feed the growing population, the alternative available ways of increasing crop productivity need to be explored and exploited. Genome engineering has a wide scope that includes technologies such as genetic engineering and transgenesis, RNA technologies, CRISPR, cisgenics and subgenics for better productivity and more efficient biotic and abiotic stress management. Therefore, the book is planned to enlighten the readers with the advanced technologies with examples and case studies, whenever possible. Efforts will be made to emphasize on general efforts on various major food crops; however, it would also be made clear that such efforts could be taken as proofs of concepts and that this could be extrapolated keeping the demand in mind.

    Contents:
    Source-Sink relationships and its effect on plant productivity: manipulation of primary carbon and starch metabolism
    Transgenic Approaches to Develop Virus Resistance in Rice
    Virus free improved food in the era of bacterial immunity
    Host-induced gene silencing (HIGS): An emerging strategy for the control of fungal plant diseases
    Genetic Engineering for Biotic Stress Management in Rice
    Genome improvement for rust disease resistance in wheat
    Novel technologies for transgenic management for plant virus resistance
    Cisgenesis: Engineering plant genomes by harnessing compatible gene pools
    Improving biotic and abiotic stress tolerance in plants: A CRISPR-Cas approach
    RNA interference (RNAi) in Functional Genomics of Wheat.
    Digital Access Springer 2021