Today's Hours: 8:00am - 10:00pm

Search

Filter Applied Clear All

Did You Mean:

Search Results

  • Article
    Samanta D.
    Epilepsy Behav. 2022 10;135:108914.
    Recently the utilization of the stereo electroencephalography (SEEG) method has exploded globally. It is now the preferred method of intracranial monitoring for epilepsy. Since its inception, the basic tenet of the SEEG method remains the same: strategic implantation of intracerebral electrodes based on a hypothesis grounded on anatomo-electroclinical correlation, interpretation of interictal and ictal abnormalities, and formation of a surgical plan based on these data. However, there are recent advancements in all these domains-electrodes implantations, data interpretation, and therapeutic strategy- that can make the SEEG a more accessible and effective approach. In this narrative review, these newer developments are discussed and summarized. Regarding implantation, efficient commercial robotic systems are now increasingly available, which are also more accurate in implanting electrodes. In terms of ictal and interictal abnormalities, newer studies focused on correlating these abnormalities with pathological substrates and surgical outcomes and analyzing high-frequency oscillations and cortical-subcortical connectivity. These abnormalities can now be further quantified using advanced tools (spectrum, spatiotemporal, connectivity analysis, and machine learning algorithms) for objective and efficient interpretation. Another aspect of recent development is renewed interest in SEEG-based electrical stimulation mapping (ESM). The SEEG-ESM has been used in defining epileptogenic networks, mapping eloquent cortex (primarily language), and analyzing cortico-cortical evoked potential. Regarding SEEG-guided direct therapeutic strategy, several clinical studies evaluated the use of radiofrequency thermocoagulation. As the emerging SEEG-based diagnosis and therapeutics are better evolved, treatments aimed at specific epileptogenic networks without compromising the eloquent cortex will become more easily accessible to improve the lives of individuals with drug-resistant epilepsy (DRE).
    Digital Access Access Options