Today's Hours: 8:00am - 10:00pm

Search

Did You Mean:

Search Results

  • Article
    Zhu L, Xing H, Hou D.
    Sci Rep. 2022 05 16;12(1):8021.
    Land cover change affects the carbon emissions of ecosystems in some way. The qualitative and quantitative understanding of carbon emissions from human activities (e.g., land cover change, industrial production, etc.) is highly significant for realizing the objective of carbon neutrality. Therefore, this paper used GlobeLand30 land cover maps, annual average normalised difference vegetation index (NDVI) data, annual average net ecosystem productivity (NEP) data and statistical yearbook data from 2000 to 2020 to explore the relationship between land cover change and carbon emissions. Specifically, it included land cover change, carbon storage changes influenced by land cover change, spatial and temporal analysis of carbon sources and sinks, land use intensity change and anthropogenic carbon emissions. The results of the study show that the main land cover changes in Shandong province during 2000-2020 was cultivated land conversion to artificial surfaces. Among them, the area of cultivated land converted to artificial surfaces from 2000 to 2010 was 4930.62 km2, and the proportion of cultivated land converted to artificial surfaces from 2010 to 2020 was as high as 78.35%. The total carbon stock of vegetation affected by land cover change decreased by 463.96 × 104 t and 193.50 × 104 t in 2000-2010 and 2010-2020 respectively. The spatial and temporal distribution of carbon sources and sinks differed more markedly from 2000 to 2020, and land use intensity changes in Shandong Province showed an upward trend. Of the total energy production, industry has the largest energy consumption, followed closely by total energy consumption in transportation, storage and postal services.
    Digital Access Access Options