Today's Hours: 8:00am - 8:00pm

Search

Did You Mean:

Search Results

  • Journal
    Digital Access Thieme v. 11-, 1980-
    Print Access Request
    Location
    Version
    Call Number
    Items
    Stored offsite. Please request print.
    15
  • Article
    Watanabe T, Flavin M.
    J Biol Chem. 1976 Jan 10;251(1):182-92.
    Nucleotides have at least two functions in eukaryotic cilia and flagella. ATP, originating in the cells, is utilized for motility by energy-transducing protein(s) called dynein, and the binding of guanine nucleotides to tubulin, and probably certain transformations of the bound nucleotides, are prerequisites for the assembly of microtubules. Besides dynein, which can be solubulized from Chlamydomonas flagella as a heterogeneous, Mg2+ or Ca2+-activated ATPase, we have purified and characterized five other flagellar enzymes involved in nucleotide transformations. A homogeneous, low molecular weight, Ca2+-specific adenosine triphosphatase was isolated, which was inhibited by Mg2+ and was not specific for ATP. This enzyme was not formed by treating purified dynein with proteases. It was absent from extracts of Tetrahymena cilia. Its function might be an auxiliary energy transducer, or in steering or tactic responses. Two species of adenylate kinase were isolated, one of which was much elevated in regenerating flagella; the latter was also present in cell bodies. A large part of flagellar nucleoside diphosphokinase activity could not be solubilized. Two soluble enzyme species were identified, one of which was also present in cell bodies. Since these enzymes are of interest because they might function in microtubule assembly, we studied the extent to which brain nucleoside diphosphokinase co-polymerizes with tubulin purified by repeated cycles of polymerization. Arginine kinase was not detected in Chlamydomonas flagellar extracts.
    Digital Access Access Options