Today's Hours: 8:00am - 10:00pm

Search

Did You Mean:

Search Results

  • Journal
    Print Access Request
    Location
    Version
    Call Number
    Items
    Stored offsite. Please request print.
    11
  • Article
    Wagner G, Hartmann R, Oesterhelt D.
    Eur J Biochem. 1978 Aug 15;89(1):169-79.
    Light-driven potassium ion uptake in Halobacterium halobium is mediated by bacteriorhodopsin. This uptake is charge-balanced by sodium ions and not by proton release. Light-induced shifts in concentrations of divalent cations were found to be negligible. The transient changes in extracellular pH (alkaline overshoot) can be understood by the concomitant processes of ATP synthesis, proton/sodium exchange and potassium uptake. The driving force of potassium ion uptake is the membrane potential, no ATP-dependent potassium transport process is found. Fluorescence measurements indicate a high permeability of the membrane to potassium ions compared to sodium ions. Therefore the potassium ion diffusion potential contributes to the membrane potential (about 30 mV/decade) and thereby influences the ATP level. Sudden enhancement of the diffusion potential by the potassium ionophore monactin leads to the expected transient increase in cellular ATP level. Due to the large size (up to 100-fold) of the potassium ion gradient and its high capacity (intracellular concentration up to 3 M) the potassium ion gradient can well serve the cell as a long term storage form of energy.
    Digital Access Access Options