Search
Filter Results
- Resource Type
- Article1
- Book1
- Book Print1
- Journal1
- Result From
- Lane Catalog1
- PubMed1
- SearchWorks (biomedical subset) 1
-
Year
- Journal Title
- Eur J Biochem1
Search Results
Sort by
- JournalDigital Access Wiley v. 1-, 1899-
- ArticleMalaisse WJ, Hutton JC, Kawazu S, Sener A.Eur J Biochem. 1978 Jun 01;87(1):121-30.Pancreatic islets contain an enzyme system which catalyzes the donation of hydrogen from NAD(P)H to menadione (2-methyl-1,4-naphthoquinone). In high concentrations (20 to 50 micrometer), menadione, in addition to lowering the concentration of reduced pyridine nucleotides in the islets, also impairs glycolysis and glucose oxidation, decreases ATP concentration, and inhibits proinsulin biosynthesis. However, at a 10 micrometer concentration, menadione fails to affect the concentration of adenine nucleotides, the utilization of glucose, the production of lactate and pyruvate, the oxidation of [6-14C]glucose and the synthesis of proinsulin; whereas the metabolism of glucose through the pentose shunt is markedly increased. The sole inhibitory effect of menadione 10 micrometer upon metabolic parameters is to reduce the concentration of both NADH and NADPH, such an effect being noticed in islets exposed to glucose 11.1 mM but not in those incubated at a higher glucose level (27.8 mM). Since, in the presence of glucose 11.1 mM, menadione 10 micrometer also severely decreases glucose-stimulated45 calcium net uptake and subsequent insulin release, it is concluded that the availability of reduced pyridine nucleotides may play an essential role in the secretory sequence by coupling metabolic to cationic events. Thus, when insulinotropic nutrients are oxidized in the B-cell, the increased availability of reduced pyridine nucleotides could modify the affinity for cations of native ionophoretic systems, eventually leading to the accumulation of calcium up to a level sufficient to trigger insulin release.