Today's Hours: 12:00pm - 8:00pm

Search

Did You Mean:

Search Results

  • Journal
    Digital Access
    Provider
    Version
    ScienceDirect
    ClinicalKey
    Print Access Request
    Location
    Version
    Call Number
    Items
    Stored offsite. Please request print.
    15
  • Article
    Terrar DA.
    J Physiol. 1978 Mar;276:403-17.
    1. End-plate currents have been studied in frog cutaneus pectoris nerve-muscle preparations mounted in continuously flowing solution, using the voltage clamp technique. 2. Exposure of the muscle to 1 mM-dithiothreitol reduced the amplitude of end-plate currents by a factor of 2.7 (mean; range 1.6-3.4; twelve fibres). 3. 1 mM-dithiothreitol also caused a 2.7-fold (2.3-3.1) increase in the rate of decay, and a 1.4-fold (1.3-1.6) decrease in the time to peak of end-plate currents. During the onset of action of dithiothreitol, there was little or no indication of departure of end-plate current decay from a simple exponential. 4. Dithiothreitol actions on amplitude and decay of end-plate currents developed with similar time courses and both effects were slower in onset at pH 7.2 than at pH 8.5. 5. The actions of dithiothreitol were reversed by exposure of the muscle to 1 mM-5,5'-dithio-bis-(2-nitrobenzoic acid). 6. Following dithiothreitol treatment, the rates of decay of end-plate currents continued to depend on membrane potential; there was little or no change in the slope of the relation between in (rate of decay) and membrane potential, consistent with little or no change in the dipole moment of a gating molecule for ion channels. 7. Dithiothreitol changed the relation between peak end-plate current and membrane potential, so that peak conductance increased at more negative membrane potentials; this finding could be accounted for in terms of the closure of ion-channel gates becoming faster though remaining voltage-sensitive after exposure to dithiothreitol. 8. It is concluded that dithiothreitol causes changes in the kinetics of gating of ion channels associated with receptors and that these changes accompany changes in the binding of ACh to receptors.
    Digital Access Access Options