Today's Hours: 8:00am - 10:00pm

Search

Did You Mean:

Search Results

  • Book
    Print Access Request
    Location
    Version
    Call Number
    Items
    Stored offsite. Please request print.
    19
  • Article
    Crompton M, Moser R, Lüdi H, Carafoli E.
    Eur J Biochem. 1978 Jan 02;82(1):25-31.
    Addition of ruthenium red to mitochondria isolated from brain, adrenal cortex, parotid gland and skeletal muscle inhibits further uptake of Ca2+ by these mitochondria but induces little or no net Ca2+ efflux; the further addition of Na+, however, induces rapid efflux of Ca2+. The velocity of the Na+-induced efflux of Ca2+ from these mitochondria exhibits a sigmoidal dependence on the [Na+]. Addition of Na+ to mitochondria exhibiting the most active Na+-dependent efflux of Ca2+ (brain and adrenal cortex) also releases Ca2+ in the absence of ruthenium red and, under these conditions, the mitochondria become uncoupled. It is concluded that the efflux of Ca2+ from these mitochondria occurs via a Na+-dependent pathway, possibly a Na+-Ca2+ antiporter, that is distinct from the ruthenium-red-sensitive carrier that catalyses energy-linked Ca2+-influx. The possible role of the Na+-dependent efflux process in the distribution of Ca2+ between the mitochondria and the cytosol is discussed. In contrast, mitochondria from liver, kidney, lung, uterus muscle and ileum muscle exhibit no Na+-dependent efflux of Ca2+.
    Digital Access Access Options