Today's Hours: 12:00pm - 8:00pm

Search

Did You Mean:

Search Results

  • Article
    Kim SH, Bartholomew DG, Allen LB, Robins RK, Revankar GR.
    J Med Chem. 1978 Sep;21(9):883-9.
    The first chemical synthesis of 2-aminoimidazo[1,2-a]-s-triazin-4-one (8), the corresponding nucleoside and nucleotide, and certain related derivatives of a new class of purine analogues containing a bridgehead nitrogen atom is described. Condensation of 2-amino-4-chloro-6-hydroxy-s-triazine (2) with aminoacetaldehyde dimethyl acetal followed by the ring annulation gave the guanine analogue 8. A similar ring annulation of 4-(2,2-dimethoxyethylamino)-s-triazine-2,6-dione (5) gave imidazo[1,2-a]-s-triazine-4,6-dione (9). Direct glycosylation of the trimethylsilyl derivative of 8 with 1-O-acetyl-2,3,5-tri-O-benzoyl-beta-D-ribofuranose in the presence of stannic chloride, followed by debenzoylation, gave the guanosine analogue 2-amino-8-(beta-D-ribofuranosyl)imidazo[1,2-a]-s-triazin-4-one (12b), which on deamination gave the xanthosine analogue 13. Phosphorylation of 12b gave 2-amino-8-(beta-D-ribofuranosyl)imidazo[1,2-a]-s-triazin-4-one 5'-monophosphate (II). The anomeric configuration has been determined unequivocally by using NMR of the 2',3'-O-isopropylidene derivate 10 and the site of ribosylation has been established by using 13C NMR spectroscopy. These compounds were tested against type 1 herpes, type 13 rhino, and type 3 parainfluenza viruses in tissue culture. Moderate rhinovirus activity was observed for several compounds at nontoxic dosage levels.
    Digital Access Access Options