Today's Hours: 8:00am - 10:00pm

Search

Did You Mean:

Search Results

  • Article
    Ireland CB, Schmidt PG.
    J Biol Chem. 1977 Apr 10;252(7):2262-70.
    Nuclear magnetic relaxation methods were used to investigate the interaction of the inhibitor succinate with aspartate transcarbamylase from Escherichia coli. Over the pH range 7 to 9, the dissociation constant for succinate remains less than the inhibitor concentration used for most of this work (0.05 M). As a result, the enzyme predominantly exists in a single "gross" conformational state. Succinate binding to this enzyme state (generally known as the R form) parallels the behavior seen previously with the isolated catalytic subunit (Beard, C. B., and Schmidt, P.G. (1973) Biochemistry 12, 2255-2264). The pH and temperature dependence of succinate proton relaxation rates, 1/T2 - 1/T1, in the presence of carbamyl phosphate, is interpreted in terms of a binding mechanism involving three forms of the enzyme, differing by their states of protonation. The least protonated form of the enzyme does not interact with succinate, the singly protonated species binds succinate to form a rapidly dissociating complex, and the doubly protonated species undergoes a conformational isomerization upon succinate binding, yielding a slow exchange complex. Relaxation data provide sufficient information to determine pKa values of 7.2 and 8.9 for two ionizing groups, as well as the dissociation constant for succinate in the fast exchange complex, Kd =1.6 X 10(-2) M. Rate constants for the forward and reverse steps of the isomerization, 1.3 X 10(3) s-1 and 33 s-1, respectively, indicate a significantly slower reverse rate from that obtained in the earlier NMR study of the isolated catalytic subunit. In experiments where the succinate concentration was varied, the relaxation rates showed sigmoidal binding of that ligand to the fast exchange complex above pH 9.1, (a) indicating cooperative binding of succinate, and (b) suggesting that above pH 9.1, the system cannot be characterized by a single dissociation constant, ionization constant, or relaxation effect. CTP and ATP were tested for their ability to affect succinate binding to the fast exchange complex. Heterotropic interactions were observed for CTP but not for ATP. Addition of low concentrations of the transition state analog N-(phosphonacetyl)-L-aspartate to the enzyme-carbamyl phosphate-succinate complex sharply decreased the relaxation rate, indicating that the measurements are sensitive only to succinate bound specifically to the active site.
    Digital Access Access Options