Today's Hours: 8:00am - 8:00pm

Search

Did You Mean:

Search Results

  • Article
    Damiano RF, Borges SAM, Jarreta RL, Pereira RAR, Lucchetti G.
    Psychiatry Res. 2022 11;317:114783.
    Refugees are individuals who live outside of their country and are at increased risk of mental health problems. Even though many papers assessed Refugees' mental health, few intended to evaluate in remote areas, such as refugee camps. On this study we assessed 102 individuals who lives in the Dzaleka Refugee Camp - Malawi. We found 78% of individuals with probable depression, 53% with thoughts about death, 25.5% with suicidal plans, and 15% reporting having attempted suicide in the 12 months prior to the assessment. This data points out to an urgent political mobilization to promote mental health to this vulnerable population.
    Digital Access Access Options
  • Article
    Wu ZL, Zhang Q, Xia ZY, Gou M, Sun ZY, Tang YQ.
    Environ Res. 2023 02 01;218:114783.
    Fluctuation disturbance of organic loading rate (OLR) is common in actual anaerobic digestion (AD), but its effects on AD of municipal sludge gets little attention. This study investigated the responses of reactor performance and active microbial community in mesophilic and thermophilic AD of municipal sludge before, during and after OLR periodic fluctuation disturbance. The performance of both reactors were similar before and after disturbance although some parameter values changed during the disturbance, which indicated their enough buffer capacity to OLR periodic fluctuation. Different microbial community at RNA level was observed in the two reactors. When the OLR disturbance commenced, the microbial community changed greatly in thermophilic AD. Error and attack tolerance of the microbial network was analyzed in order to learn the response mechanisms to OLR disturbance. The results assisted that the thermophilic microbial community was more vulnerable, but the reactor performance of which could be maintained using the functional redundancy strategy under OLR fluctuation disturbance.
    Digital Access Access Options
  • Article
    Bhat SA, Vasi Z, Jiang L, Selvaraj S, Ferguson R, Salarvand S, Gudur A, Adhikari R, Castillo V, Ismail H, Dhabaria A, Ueberheide B, Kuchay S.
    Cell Rep. 2024 Sep 21;43(10):114783.
    Compartment-specific cellular membrane protein turnover is not well understood. We show that FBXO10, the interchangeable component of the cullin-RING-ligase 1 complex, undergoes lipid modification with geranylgeranyl isoprenoid at cysteine953, facilitating its dynamic trafficking to the outer mitochondrial membrane (OMM). FBXO10 polypeptide lacks a canonical mitochondrial targeting sequence (MTS); instead, its geranylgeranylation at C953 and interaction with two cytosolic factors, cytosolic factor-like δ subunit of type 6 phosphodiesterase (PDE6δ; a prenyl-group-binding protein) and heat shock protein 90 (HSP90; a chaperone), orchestrate specific OMM targeting of prenyl-FBXO10. The FBXO10(C953S) mutant redistributes away from the OMM, impairs mitochondrial ATP production and membrane potential, and increases fragmentation. Phosphoglycerate mutase-5 (PGAM5) was identified as a potential substrate of FBXO10 at the OMM using comparative quantitative proteomics of enriched mitochondria. FBXO10 loss or expression of prenylation-deficient FBXO10(C953S) inhibited PGAM5 degradation, disrupted mitochondrial homeostasis, and impaired myogenic differentiation of human induced pluripotent stem cells (iPSCs) and murine myoblasts. Our studies identify a mechanism for FBXO10-mediated regulation of selective mitochondrial proteostasis potentially amenable to therapeutic intervention.
    Digital Access Access Options
  • Article
    Chen Z, Si L, Zhang X, Wei C, Shu W, Wei M, Cheng L, Chen Z, Qiao Y, Yang S.
    Behav Brain Res. 2024 03 12;461:114783.
    In recent years, central precocious puberty (CPP) in children is becoming more common, which seriously affects their physical and psychological health and requires finding a safe and effective treatment method. The aim of this study was to investigate the therapeutic effect of melatonin on CPP. A CPP model was established by subcutaneous injection of 300 micrograms of danazol into 5-day-old female mice, followed by treatment with melatonin and leuprolide. The vaginal opening was checked daily. Mice were weighed, gonads were weighed, gonadal index was calculated, and gonadal development was observed by hematoxylin and eosin (HE) staining. Serum follicle stimulating hormone (FSH), luteinizing hormone (LH) and estradiol (E2) levels were measured by ELISA. By using RT-PCR and Western blotting, the mRNA and protein expression of the hypothalamus Kiss-1, Kiss-1 receptor (Kiss1R), gonadotropin-releasing hormone (GnRH), and pituitary GnRH receptor (GnRHR) were identified. The results showed that melatonin delayed vaginal opening time and reduced body weight, gonadal weight and indices in female CPP mice. Melatonin treatment prevents uterine wall thickening and ovarian luteinization in female CPP mice. Melatonin treatment reduces serum concentrations of FSH, LH, and E2 in female CPP mice. Melatonin suppressed the expressions of Kiss-1, Kiss1R and GnRH in the hypothalamus, and the expression of GnRHR in the pituitary of the female CPP mice. Our results suggest that melatonin can inhibit the hypothalamic-pituitary-gonadal (HPG) axis by down-regulating the Kiss-1/Kiss1R system, thereby treating CPP in female mice.
    Digital Access Access Options
  • Article
    Zhang H, Chao B, Gao X, Cao X, Li X.
    J Environ Manage. 2022 Mar 14;311:114783.
    This study constructed sediment microbial fuel cells (SMFCs) for polycyclic aromatic hydrocarbons (PAHs) removal in contaminated aquaculture sediment. Starch, a waste deposited in aquaculture sediment, was employed as the co-substrate for electricity generation and PAHs removal, and the effect of starch-derived organic acids on SMFC performance was assessed. The results indicated that sufficient starch promoted PAHs removal (69.9% for naphthalene, 55.6% for acenaphthene, and 46.8% for pyrene) in dual-chamber SMFC, whereas excessive starch attenuated SMFC performance because the organic acids accumulation reduced anode pH, decreased species diversity, and changed the microbial communities. The electricity generation and PAHs removal were positively correlated (R > 0.96), and both of them were related to Macellibacteroides belonging to Bacteroidetes. However, a larger single-chamber SMFC device did not obtain enhanced PAHs removal owing to the restricted "effective range" of the anode. Hence, more challenges need to be addressed to realize the practical application of SMFC.
    Digital Access Access Options
  • Article
    Xie LK, Xu XJ, Wu X, Wang MJ, Gao CF, Wang DM, Ren SM, Pan YN, Liu XQ.
    J Ethnopharmacol. 2022 Feb 10;284:114783.
    ETHNOPHARMACOLOGICAL RELEVANCE: Capsella bursa-pastoris (L.) Medic. (CBP) is a cruciferous plant valuable in reducing fever, improving eyesight and calming the liver. This herb was recorded in the Compendium of Materia Medica for cataract treatment.
    AIM OF THE STUDY: To determine the effects and mechanism of CBP on cataract prevention and treatment using a selenite cataract model.
    MATERIALS AND METHODS: The main compounds in CBP extract were analyzed by UPLC, 1H-NMR and 13C-NMR spectroscopic techniques. Flavonoids formed a significant proportion of its compounds, thus necessitating an evaluation of their inhibitory effects on the development of cataract using a selenite cataract model. The protective effects of CBP flavonoids (CBPF) against oxidative damage and the modulation of mitochondrial apoptotic pathway were subsequently verified on H2O2-treated SRA01/04 lens epithelial cells.
    RESULTS: CBPF significantly alleviated the development of cataract by decreasing the MDA level and increasing the GSH-Px and SOD levels in the lens. It also inhibited H2O2-induced apoptosis in SRA01/04 cells, increased the expression of Bcl-2 protein and decreased the expressions of Caspase-3 and Bax proteins.
    CONCLUSION: CBPF exerts a significant preventive effect on cataract development by regulating the mitochondrial apoptotic pathway of the lens epithelial cells. It is thus a potent traditional Chinese medicine (TCM) whose application should be further developed for the clinical treatment of cataract.
    Digital Access Access Options
  • Article
    Li S, Li J, Yang X, Huang J, Feng S, Xie Z, Yang N, Wang Y, Zhou N.
    Exp Neurol. 2024 Jul;377:114783.
    The structural and functional features of lymphatic vessels in the peripheral nervous system (pLVs) is still unclear. Here, we clarify the existence of pLVs in rats, PROX1-EGFP transgenic mice and human, and exhibit a clear three-dimensional structure for helping understand its structural features. Moreover, two specific phenotypes of lymphatics endothelial cells (Rnd1Hi LECs and Ccl21Hi LECs) in peripheral nerves are well characterized by single-cell sequencing. Subsequently, the ability of trans-lymphatic delivery to peripheral nerves via pLVs has been dynamically demonstrated. After peripheral nerve injury (PNI), extensive lymphangiogenesis occurs in the lesion area and further enhances the efficiency of retrograde lymphatic-nerve transport. In PNI animal models, subcutaneously footpad-injected exosomes are efficiently delivered to sciatic nerve via pLVs which can promote nerve regeneration. The trans-lymphatic delivery to peripheral nerves via pLVs can subtly bypass BNB which provides an easy and alternative delivery route for PNI treatment.
    Digital Access Access Options
  • Article
    Posadino AM, Giordo R, Ramli I, Zayed H, Nasrallah GK, Wehbe Z, Eid AH, Gürer ES, Kennedy JF, Aldahish AA, Calina D, Razis AFA, Modu B, Habtemariam S, Sharifi-Rad J, Pintus G, Cho WC.
    Biomed Pharmacother. 2023 Jul;163:114783.
    Anthocyanins are colored polyphenolic compounds that belong to the flavonoids family and are largely present in many vegetables and fruits. They have been used in traditional medicine in many cultures for a long time. The most common and abundant anthocyanins are those presenting an O-glycosylation at C-3 (C ring) of the flavonoid skeleton to form -O-β-glucoside derivatives. The present comprehensive review summarized recent data on the anticancer properties of cyanidings along with natural sources, phytochemical data, traditional medical applications, molecular mechanisms and recent nanostrategies to increase the bioavailability and anticancer effects of cyanidins. For this analysis, in vitro, in vivo and clinical studies published up to the year 2022 were sourced from scientific databases and search engines such as PubMed/Medline, Google scholar, Web of Science, Scopus, Wiley and TRIP database. Cyanidins' antitumor properties are exerted during different stages of carcinogenesis and are based on a wide variety of biological activities. The data gathered and discussed in this review allows for affirming that cyanidins have relevant anticancer activity in vitro, in vivo and clinical studies. Future research should focus on studies that bring new data on improving the bioavailability of anthocyanins and on conducting detailed translational pharmacological studies to accurately establish the effective anticancer dose in humans as well as the correct route of administration.
    Digital Access Access Options
  • Article
    Pal A, Kaswan K, Barman SR, Lin YZ, Chung JH, Sharma MK, Liu KL, Chen BH, Wu CC, Lee S, Choi D, Lin ZH.
    Biosens Bioelectron. 2023 Jan 01;219:114783.
    The outbreak of pandemics (e.g., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 in 2019), influenza A viruses (H1N1 in 2009), etc.), and worldwide spike in the aging population have created unprecedented urgency for developing new drugs to improve disease treatment. As a result, extensive efforts have been made to design novel techniques for efficient drug monitoring and screening, which form the backbone of drug development. Compared to traditional techniques, microfluidics-based platforms have emerged as promising alternatives for high-throughput drug screening due to their inherent miniaturization characteristics, low sample consumption, integration, and compatibility with diverse analytical strategies. Moreover, the microfluidic-based models utilizing human cells to produce in-vitro biomimetics of the human body pave new ways to predict more accurate drug effects in humans. This review provides a comprehensive summary of different microfluidics-based drug sensing and screening strategies and briefly discusses their advantages. Most importantly, an in-depth outlook of the commonly used detection techniques integrated with microfluidic chips for highly sensitive drug screening is provided. Then, the influence of critical parameters such as sensing materials and microfluidic platform geometries on screening performance is summarized. This review also outlines the recent applications of microfluidic approaches for screening therapeutic and illicit drugs. Moreover, the current challenges and the future perspective of this research field is elaborately highlighted, which we believe will contribute immensely towards significant achievements in all aspects of drug development.
    Digital Access Access Options
  • Article
    Deng Y, Weng L, Li Y, Chen Y, Ma J.
    Environ Pollut. 2020 Sep;264:114783.
    Evaluating speciation of arsenic (As) is essential to assess its risk in paddy soils. In this study, effects of phosphate on speciation of As in six paddy soils differing in redox status were studied over a range of pH (pH 3-9) and different background calcium (Ca) levels by batch adsorption experiments and speciation modeling. Contrasting effects of phosphate on As speciation were observed in suboxic and anoxic soils. Under suboxic conditions, phosphate inhibited Fe and As reduction probably due to stabilization of Fe-(hydr)oxides, but increased soluble As(V) concentration as a result of competitive adsorption between As(V) and phosphate. In anoxic soils, phosphate stimulated Fe and As reduction and caused increases of As(III) in soil solution under both acidic and neutral/alkaline pH. The LCD (Ligand and Charge Distribution) and NOM-CD (Natural Organic Matter-Charge Distribution) model can describe effects of pH, calcium and phosphate on As speciation in these paddy soils. The results suggest that phosphate fertilization may decrease (at low pH) or increase (at neutral/alkaline pH) As mobility in paddy soils under (sub)oxic conditions, but under anoxic conditions and in phosphorus deficient soils phosphate fertilization may strongly mobilize As by promoting microbial activities.
    Digital Access Access Options
  • Article
    Bettani SR, Borges MTMR, Soares MR, Liska GR, Rodrigues CEDC.
    Food Res Int. 2024 Sep;192:114783.
    Non-centrifugal raw cane sugar (NRCS) is a minimally processed product from sugarcane (Saccharum officinarum L). This product contains phytochemical and nutritional compounds that benefit human health. Despite these advantages, NRCS commercialization is hindered by a lack of knowledge about its composition and, consequently, the absence of quality standards. Studies associating the nutritional composition of sugarcane varieties and their genuine products have not yet been found in the literature, and understanding this relationship can help establish quality standards for this product. Therefore, this study evaluated the mineral nutritional composition of genuine derivative NRCS produced from two sugarcane varieties obtained under different agronomic conditions at two stages of maturation to verify the relationships between raw material and the product. The obtained sugarcanes, juices, and bagasse, as well as the produced sugars, were analyzed for mineral content, such as calcium, magnesium, potassium, phosphorus, sulfur, iron, manganese, copper, and zinc, using inductively coupled plasma optical emission spectrometry. Most mineral constituents of sugarcane are in the juice in direct proportions to those in raw sugarcane. Thus, minimally processed food derivatives have nutritional characteristics equivalent to the raw materials. Consumption of NRCS contributes to meeting daily requirements for essential nutrients such as magnesium, copper, potassium, and manganese. For manganese, 25 g of NRCS, like the one produced in this study, can fulfill 22 to 76 % of an adult male's daily mineral requirements. The variation observed in the four NRCS samples, obtained from the same sugarcane variety under different maturation and agronomic conditions, was 250 %. This variation makes establishing quality parameters for mineral or ash content difficult. Therefore, setting mineral content levels for NRCS is inappropriate, as this parameter naturally depends on the raw material.
    Digital Access Access Options
  • Article
    Burchiel SW, Lauer FT, Factor-Litvak P, Liu X, Santella RM, Islam T, Eunus M, Alam N, Islam T, Rahman M, Ahmed A, Ahsan H, Graziano J, Parvez F.
    Toxicol Appl Pharmacol. 2019 12 01;384:114783.
    In a cohort of approximately 200 Bangladeshi men, equally divided into smokers and non-smokers and equally divided by exposure to high and low levels of drinking water arsenic, we examined ex vivo a series of immune markers and immune function tests in peripheral blood mononuclear cells (PBMC). These immune parameters included PBMC cell surface markers (CSM) for B, T, monocytes, and NK cells, activated T and B cell markers, cytokine production in vitro, and analysis of CD4 subsets (Th1, Th2, Treg, and Th17 cells). We found that the effects of cigarette smoke were quite different than those associated with arsenic or polycyclic aromatic hydrocarbon (PAH)-DNA adducts. Cigarette smoking was associated with a significant increase in the number of PAH-DNA adducts as well as an increase in urinary levels of 1-hydropxypyrene (1-OHP). After correcting for arsenic exposure and PAH-DNA adducts, we found that cigarette smoking was associated with an increase in the percentage of CD19+ B cells, as well as the percentage of activated B cells (CD19+, HLA-DRbright cells) found in PBMC. These findings demonstrate activation of the immune system during chronic exposure to cigarette smoke, which is a known risk factor for autoimmune diseases.
    Digital Access Access Options
  • Article
    Dai T, Lin L, Chen H, Lu W, Yang X, Yang L, Liu Y, Cui J, Sun D.
    Eur J Med Chem. 2022 Dec 15;244:114783.
    The incidence of various types of cancers is increasing every year. Among these, leukemia is extremely common, and thus, developing novel drugs to combat leukemia is crucial. In this study, we designed and synthesized several hybrids and obtained a new lead molecule 5a, with a strong therapeutic effect on leukemia. The results indicated that most hybrids effectively inhibited the growth of leukemia cells, HCT-116, and A549 cancer cells with an IC50 of <10 μM. Among these hybrids, 5a and 4h showed significant anticancer activity against CCRF-CEM, with IC50 values of 0.895 μM and 0.555 μM, respectively. Particularly, 5a had lower toxicity to L02 than chlorambucil (CLB) and doxorubicin (Dox), and the high selectivity was also reflected in the normal human B lymphoblast cell line (IM9). Upon investigating the mechanism of action, we found that 5a downregulated Bcl-2 and caused DNA double-stranded breaks (DSBs) to induce several genotoxic stress responses. The results of the flow cytometry assay showed that 5a was a non-specific molecule in the cell cycle. Furthermore, 5a did not affect total ROS levels but significantly improved the activity of glutathione peroxidase (GPx). Preliminary studies showed that nitrogen mustard exerted an efficient effect, and 5a can combine the advantages of artemisinin and nitrogen mustard and exhibit effects superior to either. This study showed that 5a should be further investigated as a therapeutic compound against leukemia.
    Digital Access Access Options
  • Article
    Naidu S, Pandey J, Mishra LC, Chakraborty A, Roy A, Singh IK, Singh A.
    Ecotoxicol Environ Saf. 2023 Apr 15;255:114783.
    In the current scenario of global warming and climate change, plants face many biotic stresses, which restrain growth, development and productivity. Nanotechnology is gaining precedence over other means to deal with biotic and abiotic constraints for sustainable agriculture. One of nature's most beneficial metalloids, silicon (Si) shows ameliorative effect against environmental challenges. Silicon/Silica nanoparticles (Si/SiO2NPs) have gained special attention due to their significant chemical and optoelectronic capabilities. Its mesoporous nature, easy availability and least biological toxicity has made it very attractive to researchers. Si/SiO2NPs can be synthesised by chemical, physical and biological methods and supplied to plants by foliar, soil, or seed priming. Upon uptake and translocation, Si/SiO2NPs reach their destined cells and cause optimum growth, development and tolerance against environmental stresses as well as pest attack and pathogen infection. Using Si/SiO2NPs as a supplement can be an eco-friendly and cost-effective option for sustainable agriculture as they facilitate the delivery of nutrients, assist plants to mitigate biotic stress and enhances plant resistance. This review aims to present an overview of the methods of formulation of Si/SiO2NPs, their application, uptake, translocation and emphasize the role of Si/SiO2NPs in boosting growth and development of plants as well as their conventional advantage as fertilizers with special consideration on their mitigating effects towards biotic stress.
    Digital Access Access Options
  • Article
    Api AM, Bartlett A, Belsito D, Botelho D, Bruze M, Bryant-Freidrich A, Burton GA, ... Show More Cancellieri MA, Chon H, Dagli ML, Dekant W, Deodhar C, Farrell K, Fryer AD, Jones L, Joshi K, Lapczynski A, Lavelle M, Lee I, Moustakas H, Muldoon J, Penning TM, Ritacco G, Sadekar N, Schember I, Schultz TW, Siddiqi F, Sipes IG, Sullivan G, Thakkar Y, Tokura Y.
    Food Chem Toxicol. 2024 Oct;192 Suppl 1:114783.
    Digital Access Access Options
  • Book
    Anis Jellad, Amine Kalai and Ahmed Zrig.
    Summary: Clinicians, physiatrists, and fitness trainers are daily faced with challenges regarding the diagnosis and management of microtraumatic knee injuries. These conditions are particularly complex and misdiagnosis or delayed diagnosis may lead to performance limitations and a prolonged absence from sports activities. Knee Pain in Sports Medicine: Essentials of Diagnosis and Treatment helps readers accurately diagnose these conditions and provides effective guidance on management, allowing for prompt recovery and return to play. Contains numerous helpful illustrations, including patient photographs, anatomical drawings, and imaging results. Concludes each chapter with take-home messages that help readers remember key points regarding the specific pathology. Includes a valuable self-assessment section with clinical cases and multiple-choice questions that allow readers to evaluate their own work and learning progress. Consolidates today's available information on this timely topic into a single, convenient resource.

    Contents:
    Patellofemoral pain
    Patellar tendinopathy
    Quadriceps tendon injuries
    Iliotibial band syndrome
    Pes anserinus syndrome
    Biceps femoris tendinopathy
    Popliteus tendinopathy
    Ganglion cyst and mucoid degeneration of the anterior cruciate ligament
    Osteochondritis dissecans
    Overuse meniscal pathology
    Knee bursitis
    Osgood–schlatter disease
    Sinding–larsen and Johansson syndrome
    Instability of the proximal tibiofibular joint.
    Digital Access ClinicalKey [2024]