Search
Filter Results
- Resource Type
- Article4
- Book1
- Book Digital1
- Article Type
- Research Support, Non-U.S. Gov't1
- Result From
- PubMed4
- Lane Catalog1
-
Year
- Journal Title
- Environ Sci Pollut Res Int2
- Oncotarget1
- PLoS One1
Search Results
Sort by
- ArticleOh JJ, Park S, Lee SE, Hong SK, Lee S, Kim TJ, Lee IJ, Ho JN, Yoon S, Byun SS.Oncotarget. 2017 Sep 29;8(44):75979-75988.PURPOSE: To investigate the genetic risk score (GRS) from a large-scale exome-wide association study as a tool of prediction for biochemical recurrence (BCR) after radical prostatectomy (RP) in prostate cancer (PCa).
RESULTS: The 16 SNPs were selected as significant predictors of BCR. The GRS in men experiencing BCR was -1.21, significantly higher than in non-BCR patients (-2.43) (p < 0.001). The 10-year BCR-free survival rate was 46.3% vs. 81.8% in the high-versus low GRS group, respectively (p < 0.001). The GRS was a significant factor after adjusting for other variables in Cox proportional hazard models (HR:1.630, p < 0.001). The predictive ability of the multivariate model without GRS was 84.4%, increased significantly to 88.0% when GRS was included (p = 0.0026).
MATERIALS AND METHODS: Total 912 PCa patients were enrolled who had received RP and genotype analysis using Exome chip (HumanExome BeadChip). Genetic results were obtained by the methods of logistic regression analysis which measured the odds ratio (OR) to BCR. The GRS was calculated by the sum of each weighted-risk allele count multiplied by the natural logarithm of the respective ORs. Survival analyses were performed using the GRS. We compared the accuracy of separate multivariate models incorporating clinicopathological factors that either included or excluded the GRS.
CONCLUSIONS: GRS had additional predictive gain of BCR after RP in PCa. The addition of personally calculated GRS significantly increased the BCR prediction rate. After validation of these results, GRS of BCR could be potential biomarker to predict clinical outcomes. - ArticleKorkotian E, Bombela T, Odegova T, Zubov P, Segal M.PLoS One. 2013;8(11):e75988.The effects of ethanol on neuronal network activity were studied in dissociated cultures of rat hippocampus. Exposure to low (0.25-0.5%) ethanol concentrations caused an increase in synchronized network spikes, and a decrease in the duration of individual spikes. Ethanol also caused an increase in rate of miniature spontaneous excitatory postsynaptic currents. Higher concentrations of ethanol eliminated network spikes. These effects were reversible upon wash. The effects of the high, but not the low ethanol were blocked by the GABA antagonist bicuculline. The enhancing action of low ethanol was blocked by apamin, an SK potassium channel antagonist, and mimicked by 1-EBIO, an SK channel opener. It is proposed that in cultured hippocampal networks low concentration of ethanol is associated with SK channel activity, rather than the GABAergic receptor.
- ArticleLi X, Wang Y, Wu K, Feng Z.Environ Sci Pollut Res Int. 2023 Jun;30(30):75973-75988.As the carrier of human economic activities, the change of territorial space affects the level of regional carbon balance. Therefore, with regional carbon balance as the goal, this paper proposed a framework from the perspective of production-living-ecological space and took Henan Province of China as a study area for empirical research. First, the study area established an accounting inventory that considers nature, society, and economic activities to calculate carbon sequestration/emission. Then, the spatiotemporal pattern of carbon balance was analyzed by ArcGIS from 1995 to 2015. Later, the CA-MCE-Markov model was used to simulate the production-living-ecological space pattern in 2035, and carbon balance in three future scenarios was predicted. The study showed that from 1995 to 2015, the living space gradually expanded, and the aggregation rose while the production space decreased. Carbon sequestration (CS) was less than carbon emission (CE) and presented an unbalanced state of negative income in 1995, while CS exceeded CE and showed a positive income imbalance in 2015. In 2035, living space has the highest carbon emission capacity under natural change scenario (NC), while ecological space has the highest carbon sequestration capacity under ecological protection scenario (EP), and production space has the highest carbon sequestration capacity under food security scenario (FS). The results are crucial for understanding the carbon balance changes in territorial space and supporting regional carbon balance goals in the future.
- ArticleYuan Kong, Ji C, Guo D, He R, Zhao M, Fan J.Environ Sci Pollut Res Int. 2022 Oct;29(50):75978-75988.The management of Fusarium head blight relies heavily on triazole fungicides. Most of triazole fungicides are chiral, and their enantioselective effects on metabolic phenotypes are poorly understood. Herein, we analyzed the bioactivity of triticonazole against Fusarium graminearum, and 1H-nuclear magnetic resonance-based metabolomics was used to assess the metabolic disturbances of triticonazole enantiomers in Fusarium graminearum and human hepatocarcinoma cells. Results indicated that the bioactivity of R-triticonazole was 4.28-fold higher than its antipode since it bound stronger with fungal CYP51B and induced more abnormal metabolic processes of Fusarium graminearum, including lipid metabolism, glycolysis, and amino acid metabolism. In human hepatocarcinoma cells, pathways of "alanine, aspartic acid and glutamate metabolism" and "pyruvate metabolism" were disturbed significantly by R-triticonazole; "phenylalanine metabolism" and "taurine-hypotaurine metabolism" were abnormal in the exposure of S-triticonazole. These results suggested that R- and S-triticonazole could affect different metabolic pathways of human hepatocarcinoma cells, and the massively use of inefficient S-triticonazole should be avoided. Our data will help to better understand the enantioselectivity of chiral pesticides and provide a reference for the development of green pesticides.
- Bookedited by Jan S. Iwanczyk, Krzysztof Iniewski.Summary: "The second edition of the book Radiation Detection Systems presents variety of radiation detection systems giving readers a broad view of the state-of-the-art in the design of detectors, front-end electronics and systems offering optimized choices of the detection tools for a particular application. The new edition has been divided into two volumes. This first volume, on Sensor Materials, Systems, Technology and Characterization Measurements puts emphasis on sensor materials, detector structures, front electronics technology and their designs as well as system optimization for different applications. Also, the book include characterization measurements of the developed detection systems."-- Provided by publisher.Digital Access TandFonline 2021