Today's Hours: 8:00am - 6:00pm

Search

Did You Mean:

Search Results

  • Article
    Baselga-Escudero L, Arola-Arnal A, Pascual-Serrano A, Ribas-Latre A, Casanova E, Salvadó MJ, Arola L, Blade C.
    PLoS One. 2013;8(7):e69817.
    miR-33 and miR-122 are major regulators of lipid metabolism in the liver, and their deregulation has been linked to the development of metabolic diseases such as obesity and metabolic syndrome. However, the biological importance of these miRNAs has been defined using genetic models. The aim of this study was to evaluate whether the levels of miR-122 and miR-33a in rat liver correlate with lipemia in nutritional models. For this purpose, we analyzed the levels of miRNA-33a and miR-122 in the livers of dyslipidemic cafeteria diet-fed rats and of cafeteria diet-fed rats supplemented with proanthocyanidins and/or ω-3 PUFAs because these two dietary components are well-known to counteract dyslipidemia. The results showed that the dyslipidemia induced in rats that were fed a cafeteria diet resulted in the upregulation of miR-33a and miR-122 in the liver, whereas the presence of proanthocyanidins and/or ω-3 PUFAs counteracted the increase of these two miRNAs. However, srebp2, the host gene of miR-33a, was significantly repressed by ω-3 PUFAs but not by proanthocyanidins. Liver mRNA levels of the miR-122 and miR-33a target genes, fas and pparβ/δ, cpt1a and abca1, respectively, were consistent with the expression of these two miRNAs under each condition. Moreover, the miR-33a and abca1 levels were also analyzed in PBMCs. Interestingly, the miR-33a levels evaluated in PBMCs under each condition were similar to the liver levels but enhanced. This demonstrates that miR-33a is expressed in PBMCs and that these cells can be used as a non-invasive way to reflect the expression of this miRNA in the liver. These findings cast new light on the regulation of miR-33a and miR-122 in a dyslipidemic model of obese rats and the way these miRNAs are modulated by dietary components in the liver and in PBMCs.
    Digital Access Access Options
  • Article
    Fabretti SC, Brassica SC, Cianciarullo MA, Romano-Lieber NS.
    Cad Saude Publica. 2018 09 06;34(9):e00069817.
    The study aimed to verify the application and performance of triggers for adverse drug events in hospitalized newborns. This prospective cohort study was conducted in the neonatal care units of a university hospital from March to September 2015. A list of triggers was developed for the identification of adverse drug events in this population. The list included antidote, clinical, and laboratory triggers. A total of 125 newborns who had received drugs during the hospitalization were included. Neonatal patient charts were screened to detect triggers. When a trigger was found, the patient chart was reviewed to identify possible adverse drug events. Each trigger's yield in the identification of adverse drug events was calculated and then classified according to its performance. Nine hundred and twenty-five triggers identified 208 suspected adverse drug events. The triggers' overall yield was 22.5%. The most frequently identified triggers were: drop in oxygen saturation, increased frequency of bowel movements, medications stop, and vomiting. The triggers with the best performance in the identification of adverse drug events were: increased creatinine, increased urea, necrotizing enterocolitis, prescription of flumazenil, hypercalcemia, hyperkalemia, hypernatremia, and oversedation. The triggers identified in this study can be used to track adverse drug events in similar neonatal care services, focusing on the triggers with the best performance and the lowest workload in the identification.
    Digital Access Access Options
  • Article
    Assar DH, Asa SA, El-Abasy MA, Elbialy ZI, Shukry M, Latif AAE, BinMowyna MN, Althobaiti NA, El-Magd MA.
    Environ Sci Pollut Res Int. 2022 Oct;29(46):69798-69817.
    Ochratoxin A (OTA) is one of the most dangerous and that pollute agricultural products, inducing a variety of toxic effects in humans and animals. The current study explored the protective effect of different concentrations of Aspergillus awamori (A. awamori) against OTA (0.3 mg/kg diet) induced renal and cardiac damage by exploring its mechanism of action in 60 New Zealand white male rabbits. Dietary supplementation of A. awamori at the selected doses of 50, 100, and 150 mg/kg diet, respectively, for 2 months significantly improved the rabbit's growth performance; modulated the suppressed immune response and restored the altered hematological parameters; reduced the elevated levels of renal injury biomarkers such as urea, creatinine, and alkaline phosphatase; and increased serum total proteins concentrations. Moreover, it also declined enzymatic activities of cardiac injury biomarkers, including AST, LDH, and CK-MB. A. awamori alleviated OTA-induced degenerative and necrotic changes in the kidney and heart of rabbits. Interestingly, A. awamori upregulated Nrf2/OH-1 signaling pathway. Therefore enhanced TAC, CAT, and SOD enzyme activities and reduced OTA-induced oxidative and nitrosative stress by declining iNOS gene expression and consequently lowered MDA and NO levels. In addition to attenuating renal and cardiac inflammation via reducing IL-1β, TNF-α gene expressions in a dose-dependent response. In conclusion,this is the first report to pinpoint that dietary incorporation of A. awamori counteracted OTA-induced renal and cardiac damage by potentiating the rabbit's antioxidant defense system through its potent antioxidant, free radical scavenging, and anti-inflammatory properties in a dose-dependent response. Based on our observations, A. awamori could be utilized as a natural protective agent against ochratoxicosis in rabbits.
    Digital Access Access Options
  • Book
    Stephen L. Walston.
    Summary: "Developing and implementing strategy is one of the most challenging tasks for healthcare leaders, as it requires a wide range of skills and knowledge. Strategic Healthcare Management: Planning and Execution provides a thorough overview of strategic principles and the competencies needed to apply them, such as communication, decision making, goal setting, data analyses, project management, and financial analysis. The book emphasizes both competitive and collaborative strategies to help healthcare leaders further their organization's mission rather than merely outperform competitors. The third edition includes 10 brand-new cases and expanded content, including new chapters on: The growing trend of healthcare data analytics, with emphasis on data-driven strategic analysis. Project management principles to support strategy implementation, with an exploration of tools and techniques such as Gantt charts. The fundamental concepts and theories of strategy, as well as the actual execution and assessment of strategic plans, are all covered in this book. Readers will gain the theoretical foundation and hands-on experience they need to comprehend, apply, and assess strategies."--Vitalsource.com viewed June 14, 2023

    Contents:
    Strategy and Strategic Management
    Understanding Market Structure and Strategy
    Business Models and Common Strategies
    Growth and Integration Strategies
    Strategic Alliances
    Stakeholders, Values, Mission, and Vision
    External Environment and Strategy
    Internal Environment and Strategy
    Healthcare Analytics and Strategic Management
    Strategic Financial Analysis
    Development and Execution of a Strategic Plan
    Business Plans and Strategic Management
    Organizational Structure and Strategy
    Strategic Change Management
    Strategic Leadership
    Implementing, Monitoring, and Evaluating Strategy
    Project Planning and Management.
    Digital Access R2Library [2023], ©2023