Today's Hours: 8:00am - 10:00pm

Search

Did You Mean:

Search Results

  • Article
    Martyniuk CJ, Prucha MS, Doperalski NJ, Antczak P, Kroll KJ, Falciani F, Barber DS, Denslow ND.
    PLoS One. 2013;8(3):e59093.
    BACKGROUND: Oocyte maturation in fish involves numerous cell signaling cascades that are activated or inhibited during specific stages of oocyte development. The objectives of this study were to characterize molecular pathways and temporal gene expression patterns throughout a complete breeding cycle in wild female largemouth bass to improve understanding of the molecular sequence of events underlying oocyte maturation.
    METHODS: Transcriptomic analysis was performed on eight morphologically diverse stages of the ovary, including primary and secondary stages of oocyte growth, ovulation, and atresia. Ovary histology, plasma vitellogenin, 17β-estradiol, and testosterone were also measured to correlate with gene networks.
    RESULTS: Global expression patterns revealed dramatic differences across ovarian development, with 552 and 2070 genes being differentially expressed during both ovulation and atresia respectively. Gene set enrichment analysis (GSEA) revealed that early primary stages of oocyte growth involved increases in expression of genes involved in pathways of B-cell and T-cell receptor-mediated signaling cascades and fibronectin regulation. These pathways as well as pathways that included adrenergic receptor signaling, sphingolipid metabolism and natural killer cell activation were down-regulated at ovulation. At atresia, down-regulated pathways included gap junction and actin cytoskeleton regulation, gonadotrope and mast cell activation, and vasopressin receptor signaling and up-regulated pathways included oxidative phosphorylation and reactive oxygen species metabolism. Expression targets for luteinizing hormone signaling were low during vitellogenesis but increased 150% at ovulation. Other networks found to play a significant role in oocyte maturation included those with genes regulated by members of the TGF-beta superfamily (activins, inhibins, bone morphogenic protein 7 and growth differentiation factor 9), neuregulin 1, retinoid X receptor, and nerve growth factor family.
    CONCLUSIONS: This study offers novel insight into the gene networks underlying vitellogenesis, ovulation and atresia and generates new hypotheses about the cellular pathways regulating oocyte maturation.
    Digital Access Access Options
  • Article
    He Z, Kuai L, Chen X, Shen W, Li W.
    Environ Sci Pollut Res Int. 2022 Aug;29(39):59076-59093.
    Considering the obvious regional differences in China, research on the drivers for renewable energy technology innovation (RETI) needs to fully consider the spatial factors. Based on the expanded function of knowledge production, which includes the human capital, institutional quality, and industrial scale, and using panel data from 29 provinces during 2006-2017, this study examines the factors promoting RETI by employing spatial regression methods. The results show that RETI presents moderate spatial agglomeration and spatial heterogeneity. Human capital, enterprise R&D intensity, and research institution R&D intensity have a significant driving effect on the local RETI, and the university R&D intensity, institutional quality, and industrial scale have no significant contribution. Human capital is the most important factor driving the local RETI, and enterprise R&D intensity has the strongest spatial spillover effect on the RETI of the surrounding provinces. In addition, the R&D intensity of enterprises and research institutions can enhance the local RETI and also significantly promote RETI in surrounding provinces through the spatial spillover effect. In contrast, human capital has played a significant driving role in the local RETI, whereas its spatial spillover effect on the surrounding provinces is not obvious. Therefore, the direct and spatial spillover effects of enterprise R&D intensity and research institution R&D intensity should be fully considered in policy making. In addition, effective policies should be formulated to break the block division of human capital investment and to promote the optimized allocation of talented people in order to better promote RETI in China.
    Digital Access Access Options
  • Book
    edited by Sumit Sinha, Debashish Chowdhury.