Search
Filter Results
- Resource Type
- Article18
- Book1
- Book Digital1
- Article Type
- Review1
- Research Support, Non-U.S. Gov't3
- Case Reports1
- Published Erratum1
- Result From
- PubMed18
- Lane Catalog1
-
Year
- Journal Title
- ACS Appl Mater Interfaces4
- RSC Adv3
- J Biol Chem2
- Opt Express2
Search Results
Sort by
- ArticleReddy A.Cureus. 2023 Feb;15(2):e34972.Introduction Transgender and gender-diverse (TGD) patients face significant healthcare disparities informed by discrimination, social stigma, and socioeconomic inequality. This is further exacerbated by a paucity of transgender health content in medical education, contributing to a large proportion of providers being ill-equipped to manage TGD patients' health concerns. Method This paper uses the framework approach for an inductive thematic analysis of online discussion forums concerning transgender health and medical education. Online text from anonymous participants was chosen for their authentic accounts of healthcare experiences and to ensure responses are less restrained in discussing sensitive topics. Results Three major themes were identified from the data: desire for more knowledgeable providers, negative healthcare experiences and attitudes, and recommendations for transgender health education. Three subcategories emerged from the latter theme that further illuminated participant recommendations for inclusive healthcare. Conclusions As a result of the unique healthcare concerns faced by TGD patients, providing materials to educate students and providers is crucial to meet the needs of the TGD patient population. Participant reports align with previous literature in recommending curricular reforms in medical school, promoting career options for TGD-identifying people in healthcare, and cultivating a more inclusive clinical culture.
- ArticleDai SX, Li WX, Han FF, Guo YC, Zheng JJ, Liu JQ, Wang Q, Gao YD, Li GH, Huang JF.Sci Rep. 2016 10 10;6:34972.
- ArticleBorham A, Haroun M, Saleh IA, Zomot N, Okla MK, Askar M, Elmasry M, Elshahat A, Liu L, Zhao C, Wang J, Qian X.Heliyon. 2024 Aug 15;10(15):e34972.In this study, the dried biomass of four marine algae, namely Porphyra sp., Gracilaria bursa-pastoris, Undaria pinnatifida and Laminaria sp., were screened for their ability to remove methylene blue (MB) dye from aqueous solutions. Statistical approaches of the Plackett-Burman Design (PBD) and Box-Behnken Design (BBD) were applied to optimize different environmental conditions in order to achieve the maximum MB removal percentage by Gracilaria bursa-pastoris. The biosorbent was characterized before and after adsorption process using FTIR, XRD and SEM analysis. Additionally, isotherms, kinetics and thermodynamics studies were conducted to investigate the adsorption behavior of the adsorbent. The results showed that Gracilaria bursa-pastoris achieved the highest dye removal efficiency (98.5 %) compared to 96.5 %, 93.5 % and 93.9 % for Undaria pinnatifida, Porphyra sp. and Laminaria sp., respectively. PBD analysis revealed that the agitation speed, pH, and biomass dose were found to be the significant parameters affecting MB removal onto Gracilaria dried biomass. According to the BBD results, the maximum dye removal percentage (99.68 %) was obtained at agitation speed of 132 rpm, pH 7 and biomass dose of 7.5 g/L. FTIR, XRD and SEM analysis demonstrated the participation of several functional groups in the adsorption process and changes in the cell surface morphology of the adsorbent following the dye adsorption. The adsorption isotherms showed better fit to Freundlich model (R2 = 0.9891) than the Langmuir, Temkin, and Dubinin-Radushkevich models. The adsorption kinetics were best described by the pseudo-second-order model (R2 = 0.9999), suggesting the chemical interactions between dye ions and the algal biomass. The thermodynamic parameters indicated that the adsorption of MB onto Gracilaria dried biomass was spontaneous, feasible, endothermic and random. These results indicate that dried biomass of Gracilaria bursa-pastoris is an attractive, environmentally friendly, cheap and effective agent for MB dye removal from environmental discharges.
- ArticleDuranti C, Carraresi L, Sette A, Stefanini M, Lottini T, Crescioli S, Crociani O, Iamele L, De Jonge H, Gherardi E, Arcangeli A.Oncotarget. 2018 Oct 09;9(79):34972-34989.Modern molecular imaging techniques have greatly improved tumor detection and post-treatment follow-up of cancer patients. In this context, antibody-based imaging is rapidly becoming the gold standard, since it combines the unique specificity of antibodies with the sensitivity of the different imaging technologies. The aim of this study was to generate and characterize antibodies in single chain Fragment variable (scFv) format directed to an emerging cancer biomarker, the human ether-à-go-go-related gene-1 (hERG1) potassium channel, and to obtain a proof of concept for their potential use for in vivo molecular imaging. The anti-hERG1scFv was generated from a full length monoclonal antibody and then mutagenized, substituting a Phenylalanine residue in the third framework of the VH domain with a Cysteine residue. The resulting scFv-hERG1-Cys showed much higher stability and protein yield, increased affinity and more advantageous binding kinetics, compared to the "native" anti-hERG1scFv. The scFv-hERG1-Cys was hence chosen and characterized: it showed a good binding to the native hERG1 antigen expressed on cells, was stable in serum and displayed a fast pharmacokinetic profile once injected intravenously in nude mice. The calculated half-life was 3.1 hours and no general toxicity or cardiac toxic effects were detected. Finally, the in vivo distribution of an Alexa Fluor 750 conjugated scFv-hERG1-Cys was evaluated both in healthy and tumor-bearing nude mice, showing a good tumor-to-organ ratio, ideal for visualizing hERG1-expressing tumor masses in vivo. In conclusion, the scFv-hERG1-Cys possesses features which make it a suitable tool for application in cancer molecular imaging.
- ArticleZhao J, Zou H, Xiao J.Medicine (Baltimore). 2023 Sep 08;102(36):e34972.RATIONALE: Generally, there is no lipoprotein in aqueous humor, and chyle usually exists transiently in the body. Therefore, persistent chylous aqueous humor is rare.
PATIENT CONCERNS: We report a case of a 39-year-old man with persistent milky white appearance over the right eye.
DIAGNOSES: The patient had a history of poorly controlled diabetes for the past 2 years and central retinal vein occlusion of the same eye for the past 2 weeks. The patient's right eye had a uniform milky appearance in the anterior chamber, transparent cornea, and no keratic precipitate in the posterior cornea. Color Doppler ultrasound of the affected eye showed no obvious inflammation in the vitreous cavity. Laboratory tests revealed severe chylemia. The patient was finally diagnosed as chylous aqueous humor.
INTERVENTIONS AND OUTCOMES: After conventional hypolipidemia and hypoglycemia treatment and locally glucocorticoid treatment. The milky white changes in the anterior chamber improved considerably and finally disappeared.
LESSONS: Although the impact of hyperlipidemia on the cardiovascular system and digestive system is well known, its impact on the eyes is often overlooked. We report a rare case of unilateral chylous aqueous humor caused by hyperlipidemia. Through the analysis of this special case, we recommend that ophthalmologists should pay attention to the impact of blood lipid change on eyes. - ArticleKawasaki A, Nakano H, Hosokawa A, Nakatsu T, Kato H, Watanabe K.J Biol Chem. 2010 Nov 05;285(45):34972-80.Pz-peptidase A, from the thermophilic bacterium Geobacillus collagenovorans MO-1, hydrolyzes a synthetic peptide substrate, 4-phenylazobenzyloxycarbonyl-Pro-Leu-Gly-Pro-D-Arg (Pz-PLGPR), which contains a collagen-specific tripeptide sequence, -Gly-Pro-X-, but does not act on collagen proteins themselves. The mammalian enzyme, thimet oligopeptidase (TOP), which has comparable functions with bacterial Pz-peptidases but limited identity at the primary sequence level, has recently been subjected to x-ray crystallographic analysis; however, no crystal structure has yet been reported for complexes of TOP with substrate analogues. Here, we report crystallization of recombinant Pz-peptidase A in complex with two phosphinic peptide inhibitors (PPIs) that also function as inhibitors of TOP and determination of the crystal structure of these complexes at 1.80-2.00 Å resolution. The most striking difference between Pz-peptidase A and TOP is that there is no channel running the length of bacterial protein. Whereas the structure of TOP resembles an open bivalve, that of Pz-peptidase A is closed and globular. This suggests that collagenous peptide substrates enter the tunnel at the top gateway of the closed Pz-peptidase A molecule, and reactant peptides are released from the bottom gateway after cleavage at the active site located in the center of the tunnel. One of the two PPIs, PPI-2, which contains the collagen-specific sequence, helped to clarify the exquisite structure and reaction mechanism of Pz-peptidase A toward collagenous peptides. This study describes the mode of substrate binding and its implication for the mammalian enzymes.
- ArticleKejík L, Horák M, Šikola T, Křápek V.Opt Express. 2020 Nov 09;28(23):34960-34972.The quality of lithographically prepared structures is intimately related to the properties of the metal film from which they are fabricated. Here we compare two kinds of thin gold films on a silicon nitride membrane: a conventional polycrystalline thin film deposited by magnetron sputtering and monocrystalline gold microplates that were chemically synthesised directly on the membrane's surface for the first time. Both pristine metals were used to fabricate plasmonic nanorods using focused ion beam lithography. The structural and optical properties of the nanorods were characterized by analytical transmission electron microscopy including electron energy loss spectroscopy. The dimensions of the nanorods in both substrates reproduced well the designed size of 240×80 nm2 with the deviations up to 20 nm in both length and width. The shape reproducibility was considerably improved among monocrystalline nanorods fabricated from the same microplate. Interestingly, monocrystalline nanorods featured inclined boundaries while the boundaries of the polycrystalline nanorods were upright. Q factors and peak loss probabilities of the modes in both structures are within the experimental uncertainty identical. We demonstrate that the optical response of the plasmonic nanorods is not deteriorated when the polycrystalline metal is used instead of the monocrystalline metal.
- ArticleZhu X, Jiang C, Chen H, Wang Y, Sun S, Zhang H, Wang P, Huang AH.Opt Express. 2022 Sep 12;30(19):34956-34972.A high sensitivity optical fiber gas pressure sensor based on the enhanced Vernier effect is proposed. The sensor is composed of a fiber Fabry-Perot interferometer (FPI) and Mach-Zehnder interferometer (MZI). Since the interference fringes of FPI and MZI drift in the opposite direction with the change of gas pressure, when their free spectral ranges are similar, the enhanced Vernier effect is formed after their cascading. Compared with the traditional Vernier effect gas pressure sensor, the enhanced Vernier effect gas pressure sensor realizes much higher sensitivity gas pressure measurement without complex manufacturing process or desensitized reference interferometer. The experimental results show that the sensitivity of the enhanced Vernier effect sensor is 241.87 nm/MPa. In the two traditional Vernier effect gas pressure sensors formed by cascading FPI and MZI, the sensitivity of sensor is 63.02 nm/MPa and 171.26 nm/MPa, respectively. Compared with the two traditional Vernier effect sensors, the sensitivity of the enhanced Vernier effect sensor is increased by 3.8 times and 1.4 times, respectively. The proposed sensor also has the advantages of good repeatability and stability, fast response, low cost and easy manufacture. Our structure also provides a new design scheme for a high sensitivity optical fiber gas pressure sensor.
- ArticleAckers ML, Greenberg AE, Lin CY, Bartholow BN, Goodman AH, Longhi M, Gurwith M.PLoS One. 2012;7(4):e34972.OBJECTIVE: To provide HIV seroincidence data among men who have sex with men (MSM) in the United States and to identify predictive factors for seroconversion.
METHODS: From 1998-2002, 4684 high-risk MSM, age 18-60 years, participated in a randomized, placebo-controlled HIV vaccine efficacy trial at 56 U.S. clinical trial sites. Demographics, behavioral data, and HIV status were assessed at baseline and 6 month intervals. Since no overall vaccine efficacy was detected, data were combined from both trial arms to calculate HIV incidence based on person-years (py) of follow-up. Predictors of seroconversion, adjusted hazards ratio (aHR), were evaluated using a Cox proportional hazard model with time-varying covariates.
RESULTS: Overall, HIV incidence was 2.7/100 py and was relatively uniform across study sites and study years. HIV incidence was highest among young men and men reporting unprotected sex, recreational drug use, and a history of a sexually transmitted infection. Independent predictors of HIV seroconversion included: age 18-30 years (aHR = 2.4; 95% CI 1.4,4.0), having >10 partners (aHR = 2.4; 95% CI 1.7,3.3), having a known HIV-positive male sex partner (aHR = 1.6; 95% CI 1.2, 2.0), unprotected anal intercourse with HIV positive/unknown male partners (aHR = 1.7; 95% CI 1.3, 2.3), and amphetamine (aHR = 1.6; 95% CI 1.1, 2.1) and popper (aHR = 1.7; 95% CI 1.3, 2.2) use.
CONCLUSIONS: HIV seroincidence was high among MSM despite repeated HIV counseling and reported declines in sexual risk behaviors. Continuing development of new HIV prevention strategies and intensification of existing efforts will be necessary to reduce the rate of new HIV infections, especially among young men. - ArticleChakraborty M, Kundu S, Bhattacharjee A.RSC Adv. 2023 Nov 30;13(50):34972-34986.Thermal decomposition of a mixture of ferrocene carboxaldehyde and oxalic acid dihydrate in O2 atmosphere produced rod-like hematite nanomaterial. The decomposition reaction was complex as evident from the overlapped multistep reaction steps in the non-isothermal thermogravimetry (TG) profiles obtained in the 300-700 K range. A peak deconvolution method was applied to separate the overlapped reaction steps. The multistep TG profiles were successfully deconvoluted, which showed that the decomposition occurs in six individual steps. However, it was found that only the last three reaction steps were responsible for the production of hematite. To estimate the activation energy values for these thermal reactions, six model-free integral isoconversional methods were used. The activation energy value significantly depends on the extent of conversion in each step; however, the nature of its dependence significantly different for each step. The most probable stepwise reaction mechanism functions for the solid-state reactions were obtained using the master plot method. The reaction mechanism was found to be different for different steps. Utilizing the activation energy and reaction mechanism function, the reaction rates of decomposition for each step were determined. To substantiate the validity of the assumed kinetic models, the experimental conversion curves were compared with the constructed ones, and the agreement was quite reasonable. The conversion-dependent thermodynamic parameters were obtained utilising the estimated kinetic parameters. Role of the co-precursor in the thermal reaction of the precursor was plausibly revealed. The present study describes how the use of a co-precursor significantly enhances the thermal decomposition of the precursor, how hematite nanomaterials can be synthesized from a co-precursor driven solid state reaction at low temperatures, and how the kinetic calculations facilitate the understanding of the solid-state reaction process. This study proposes the use of a suitable combination of precursor and co-precursor for solid-state thermal synthesis of iron-based nanoparticles using organo-iron compounds as precursor and also illustrates the effective application of the thermal analysis technique to understand the decomposition reaction.
- ArticleYamamoto K, Tanikawa T, Tomita J, Ishida Y, Nakata D, Terao K, Inoue Y.ACS Omega. 2023 Sep 26;8(38):34972-34981.The study aimed to prepare inclusion complexes of 1,3-diphenylurea (DPU) with β-cyclodextrin (βCD) and 2-hydroxypropyl-β-cyclodextrin (HP-βCD) using a three-dimensional ground mixture (3DGM). Their physicochemical properties, intermolecular interactions, solubilities, and plant growth-promoting activities were investigated on broccoli sprouts. Phase-solubility diagrams indicated the stability constant (Ks) and complexation efficiency (CE) of βCD/DPU were found to be K1/1 = 250 M-1, CE = 2.48× 10-3. The Ks and CEs of HP-βCD/DPU were found to be K1/1 = 427 M-1, CE = 3.93 × 10-3 and K2/1 = 196 M-1, CE = 1.93 × 10-3 respectively. The powder X-ray diffraction results of 3DGM (βCD/DPU = 2/1, HP-βCD/DPU = 2/1) showed that the diffraction peaks originating from the DPU and βCD disappeared, indicating a halo pattern. Differential scanning calorimetry results showed an endothermic peak at 244 °C derived from the melting point of DPU, but the endothermic peak disappeared in the 3DGM (βCD/DPU = 2/1, HP-βCD/DPU = 2/1). Near-infrared absorption spectra showed peak shifts in 3DGM (βCD/DPU and HP-βCD/DPU) at the -CH and -NH groups of DPU and the -OH groups of βCDs and free water. In the dissolution test (after 5 min), the concentration of intact DPU was 0.083 μg/mL. However, the dissolution concentrations of DPU in the 3DGM (βCD/DPU = 1/1), 3DGM (βCD/DPU = 2/1), 3DGM (HP-βCD/DPU = 1/1), and 3DGM (HP-βCD/DPU = 2/1) were 3.27, 3.64, 5.70, and 7.03 μg/mL, respectively, indicating higher solubility than that of the intact DPU. Further, 1H-1H NOESY NMR spectroscopic measurements showed cross-peaks between H-A (7.32 ppm) and H-B (7.12 ppm) of DPU and H-6 (3.79 ppm) in the βCD cavity of the 3DGM (βCD/DPU = 2/1). A cross-peak was also observed among DPU H-A (7.32 ppm), H-B (7.11 ppm), and H-6 (3.78 ppm) in the βCD cavity. The results of the broccoli sprout cultivation experiment showed that 3DGM (βCD/DPU = 1/1), 3DGM (βCD/DPU = 2/1), 3DGM (HP-βCD/DPU = 1/1), and 3DGM (HP-βCD/DPU = 2/1) increased the stem thickness compared with that of the control group (DPU). These results indicated that the βCD/DPU and HP-βCD/DPU inclusion complexes were formed by the three-dimensional mixing and milling method, which enhanced the solubility and plant growth-promoting effects.
- ArticleZhang X, Ren XY, Hong X, Gao XY.RSC Adv. 2019 Oct 28;9(60):34972-34985.The properties and friction behavior of ZCuPb20Sn5 modified with P were investigated. With the P addition and content increase, the second phase appeared and gradually increased in amount. Also, the microstructure of ZCuPb20Sn5 was refined and evenly distributed. The addition of P had a beneficial effect on the microstructure and properties of ZCuPb20Sn5. As the P content increased, the hardness and tensile strength of ZCuPb20Sn5 increased, but the elongation, the friction coefficient and the wear rate decreased. The wear mechanism of ZCuPb20Sn5 was mainly adhesive wear, and a small amount of debris was produced. As the P content increased, the anti-wear resistance of ZCuPb20Sn5 deteriorated.
- ArticleJiao X, Sun W, Zhang Y, Liu X, Zhang Q, Wang Q, Zhang S, Zhao ZK.RSC Adv. 2018 Oct 10;8(61):34967-34972.The yeast Saccharomyces cerevisiae serves as a promising host for the production of a wide range of chemical compounds and fuels. Currently, simultaneous expression of several genes could be achieved via the use of 2A viral peptides, yet detailed characterizations to assess the discrepancy of different orders of genes linked by 2A peptides are rarely sufficient. In this study, we investigated the effects of the order of genes linked by porcine teschovirus-1 2A (P2A) peptide on the metabolic pathway in S. cerevisiae. A heterologous carotenoid biosynthetic system involving nine kinds of polycistronic expression of codon-optimized carotenogenic genes GGPPS, CARB and CARRP from Blakeslea trispora was introduced into S. cerevisiae. The order of genes in the polycistronic segment was exchanged; β-carotene production by engineered yeasts was significantly different. The highest β-carotene yield was achieved in transformants carrying the plasmid, with CARB as the first gene in the polycistronic construct regardless of the location of GGPPS, CARRP. In addition, we found that β-carotene production was coupled with the growth in engineered strain with the highest β-carotene content during the shake flask fermentation and fed-batch fermentation. A novel microbial heterologous carotenoid production system was established by optimizing the order of genes linked by P2A peptide sequences in a polycistronic expression construct. The observation of the importance of the order in a polycistronic construct may be used to increase yields in other P2A peptide-containing expression systems.
- ArticleQue M, Wu Q, Li Y, Yuan H, Zhong P, He S, Xu Y, Li B, Ma X, Que W.ACS Appl Mater Interfaces. 2024 Jul 10;16(27):34962-34972.Formamidinium lead triiodide quantum dot (FAPbI3 QD) exhibits substantial potential in solar cells due to its suitable band gap, extended carrier lifetime, and superior phase stability. However, despite great attempts toward reconfiguring the surface chemical environment of FAPbI3 QDs, achieving the optimal efficiency of charge carrier extraction and transfer in cells remains a challenge. To circumvent this problem, we selectively introduced Au/FAPbI3 Schottky heterojunctions by reducing Au+ to Au0 and subsequently anchoring them on the surface of FAPbI3 QDs, which acts as a light-harvesting layer and establishes high-speed electron transfer channels (Au dot ↔ Au dot). As a result, the champion photoelectric conversion efficiency of solar cells reached 13.68%, a significant improvement over 11.19% of that of FAPbI3-based solar cells. The enhancement is attributed to efficient and directed electron transfer as well as a more aligned energy level arrangement. This work constructed Au/FAPbI3 QD Schottky heterojunctions, providing a viable strategy to enhance QD electron coupling for high-performance optoelectronic applications.
- ArticleXu Z, Liu X, Zhou J, Yan Y, Song Y, Huang Q, Ren H, Ding Y, Zhang X, Zhao Y, Hou G.ACS Appl Mater Interfaces. 2023 Jul 26;15(29):34964-34972.Aluminum-doped zinc oxide (AZO) is considered as a promising candidate as transparent conductive oxide (TCO) for silicon heterojunction solar cells due to its high carrier density, nontoxic nature, and low cost. Herein, it is presented that the transparency of the AZO film can be optimized through co-sputtering of AZO and molybdenum oxide (MoOx). Furthermore, aluminum and molybdenum co-doped zinc oxide (MAZO) can be used as both the TCO layer and electron-selective contact (ESC) for silicon heterojunction solar cells. The surface morphology, cation oxidation state, and optical and electrical properties of all MAZO films are characterized. It is found that the transmittance of all MAZO films is significantly increased at a wavelength of 450-800 nm due to MAZO with a stronger Zn-O bond and a wider band gap. The conductivity of MAZO films is approximate to AZO films at a low MoOx target deposit power (50 W), and the sheet resistance of MAZO films increases significantly by increasing the deposition power up to 100 W. Finally, the optimized MAZO films are used as TCO and ESC for silicon heterojunction solar cells, showing a power conversion efficiency of 19.58%. The results show an effective stage to improve the optical properties of AZO through co-doping and the possibility of applying MAZO as a dual-functional layer for silicon solar cells.
- ArticleChou WY, Peng SK, Chang FH, Cheng HL, Ruan JJ, Ho TY.ACS Appl Mater Interfaces. 2021 Jul 28;13(29):34962-34972.Ferromagnetic semiconductors with structural flexibility are an indispensable feature for future flexible spin-electronic applications. In this case, we introduce magnetic ingredients into an organic semiconductor, namely, pentacene, to form a ferromagnetic organic semiconductor (FOS). The first observation for ferromagnetic Ni-doped pentacene semiconductors at room temperature in the field of semiconductor spintronics is reported in this article. To date, the mechanism of FOSs with ferromagnetism is not understood yet, especially when their Curie temperature is enhanced above room temperature. Here, we demonstrate dopants of Ni atoms and the modulation of the growth temperature in the FOS films to achieve room-temperature ferromagnetic properties in a series of FOS films, one of which has a maximum coercivity of 257.6 Oe. The spin-exchange interaction between a Ni atom and a pentacene molecule is detected through the magnetic hysteresis obtained using a superconducting quantum interference device magnetometer. We verify the effectiveness of this spin coupling through magnetic force microscopy, Raman spectroscopy, scanning Kelvin probe microscopy, and theoretical simulation. A model for the indirect spin coupling between Ni atoms is proposed for the mechanism of room-temperature ferromagnetic ordering of spins due to the exchange force indirectly. We believe that the π-electrons of pentacene molecules at the triple state for this model can support the spin coupling of electrons of Ni atoms. Our findings facilitate the development of brand-new spintronic devices with structural flexibility and room-temperature ferromagnetism.
- ArticleYang Y, Liu C, Ding Y, Arain Z, Wang S, Liu X, Hayat T, Alsaedi A, Dai S.ACS Appl Mater Interfaces. 2019 Sep 25;11(38):34964-34972.Elimination of interfacial charge trapping is still a challenge for promoting both efficiency and operational stability of organic-inorganic perovskite solar cells (PSCs). Herein, an effective interface dipole, trimethylamine oxide (TMAO) regarded as a connecting bridge, is inserted between the electron transport layer (ETL) and the perovskite layer to suppress charge accumulation and fabricate highly efficient and stable PSCs. As demonstrated by energy level alignment and morphology characterization, TMAO dipoles could achieve a decreased energetic barrier of electron transport and substantial padding of perovskite in the mesoporous ETL. Thus, they facilitate the charge transfer and reduce trapped charge densities as well as recombination centers at the interface between perovskite and ETL. These desirable properties improve the device efficiency to 21.77% and weaken the hysteresis index almost to 0. More importantly, the stability of the unencapsulated PSCs is remarkably enhanced. The findings provide valuable insights into the role of a dipolar molecule in boosting the performance of PSC devices.
- ArticleTransglutaminase 2 mediates polymer formation of I-kappaBalpha through C-terminal glutamine cluster.Park SS, Kim JM, Kim DS, Kim IH, Kim SY.J Biol Chem. 2006 Nov 17;281(46):34965-72.Recently we reported that transglutaminase 2 (TGase 2) activates nuclear factor-kappaB (NF-kappaB) independently of I-kappaB kinase (IKK) activation, by inducing cross-linking and protein polymer formation of inhibitor of nuclear factor-kappaBalpha (I-kappaBalpha). TGase 2 catalyzes covalent isopeptide bond formation between the peptide bound-glutamine and the lysine residues. Using matrix-assisted laser desorption ionization time-of-flight mass spectra analysis of I-kappaBalpha polymers cross-linked by TGase 2, as well as synthetic peptides in an in vitro competition assay, we identified a glutamine cluster at the C terminus of I-kappaBalpha (amino acids 266-268) that appeared to play a key role in the formation of I-kappaBalpha polymers. Although there appeared to be no requirement for specific lysine residues, we found a considerably higher preference for the use of lysine residues at positions 21, 22, and 177 in TGase 2-mediated cross-linking of I-kappaBalpha. We demonstrated that synthetic peptides encompassing the glutamine cluster at amino acid positions 266-268 reversed I-kappaBalpha polymerization in vitro. Furthermore, the depletion of free I-kappaBalpha in EcR/TG cells was completely rescued in vivo by transfection of mutant I-kappaBalphas in glutamine sites (Q266G, Q267G, and Q313G) as well as in a lysine site (K177G). These findings provide additional clues into the mechanism by which TGase 2 contributes to the inflammatory process via activation of NF-kappaB.