Today's Hours: 8:00am - 10:00pm

Search

Did You Mean:

Search Results

  • Book
    edited by David E. Elder, Daniela Massi, Richard A. Scolyer, Rein Willemze.
    Contents:
    1. Keratinocytic/epidermal tumours.
    2. Melanocytic tumours.
    3. Appendageal tumours.
    4. Tumours of haematopoletic and lymphoid origin
    5. Soft tissue tumours.
    6. Inherited tumour syndromes associated with skin malignancies
    Contributors
    Declaration of Interests
    IARC/WHO Committee for ICD-O
    Sources of figures and tables
    References
    Subject index
    List of abbreviations
    Print Access Request
    Location
    Version
    Call Number
    Items
    New Books Shelf (Duck Room)
    RC280.S5 W67 2018
    1
  • Article
    Rochford LA, Ramadan AJ, Woodruff DP, Heutz S, Jones TS.
    Phys Chem Chem Phys. 2015 Nov 28;17(44):29747-52.
    The growth and characterisation of a non-planar phthalocyanine (vanadyl phthalocyanine, VOPc) on a complete monolayer (ML) of a planar phthalocyanine (Iron(II) phthalocyanine, FePc) on an Au(111) surface, has been investigated using ultra-high vacuum (UHV) scanning tunnelling microscopy (STM) and low energy electron diffraction (LEED). The surface mesh of the initial FePc monolayer has been determined and shown to correspond to an incommensurate overlayer, not commensurate as previously reported. Ordered islands of VOPc, with (1 × 1) epitaxy, grow on the FePc layer at submonolayer coverages. The individual VOPc molecules occupy sites directly atop the underlying FePc molecules, indicating that significant intermolecular bonding must occur. It is proposed that this interaction implies that the V[double bond, length as m-dash]O points down into the surface, allowing a Fe-O bond to form. The detailed appearance of the STM images of the VOPc molecules is consistent with previous studies in other VOPc growth studies in which this molecular orientation has been proposed.
    Digital Access Access Options
  • Article
    Robal T, Larsson M, Martin M, Olivecrona G, Lookene A.
    J Biol Chem. 2012 Aug 24;287(35):29739-52.
    Angiopoietin-like protein 4 (Angptl4), a potent regulator of plasma triglyceride metabolism, binds to lipoprotein lipase (LPL) through its N-terminal coiled-coil domain (ccd-Angptl4) inducing dissociation of the dimeric enzyme to inactive monomers. In this study, we demonstrate that fatty acids reduce the inactivation of LPL by Angptl4. This was the case both with ccd-Angptl4 and full-length Angptl4, and the effect was seen in human plasma or in the presence of albumin. The effect decreased in the sequence oleic acid > palmitic acid > myristic acid > linoleic acid > linolenic acid. Surface plasmon resonance, isothermal titration calorimetry, fluorescence, and chromatography measurements revealed that fatty acids bind with high affinity to ccd-Angptl4. The interactions were characterized by fast association and slow dissociation rates, indicating formation of stable complexes. The highest affinity for ccd-Angptl4 was detected for oleic acid with a subnanomolar equilibrium dissociation constant (K(d)). The K(d) values for palmitic and myristic acid were in the nanomolar range. Linoleic and linolenic acid bound with much lower affinity. On binding of fatty acids, ccd-Angptl4 underwent conformational changes resulting in a decreased helical content, weakened structural stability, dissociation of oligomers, and altered fluorescence properties of the Trp-38 residue that is located close to the putative LPL-binding region. Based on these results, we propose that fatty acids play an important role in modulating the effects of Angptl4.
    Digital Access Access Options
  • Article
    Lo WY, Botzolakis EJ, Tang X, Macdonald RL.
    J Biol Chem. 2008 Oct 31;283(44):29740-52.
    Members of the Cys-loop superfamily of ligand-gated ion channels, which mediate fast synaptic transmission in the nervous system, are assembled as heteropentamers from a large repertoire of neuronal subunits. Although several motifs in subunit N-terminal domains are known to be important for subunit assembly, increasing evidence points toward a role for C-terminal domains. Using a combination of flow cytometry, patch clamp recording, endoglycosidase H digestion, brefeldin A treatment, and analytic centrifugation, we identified a highly conserved aspartate residue at the boundary of the M3-M4 loop and the M4 domain that was required for binary and ternary gamma-aminobutyric acid type A receptor surface expression. Mutation of this residue caused mutant and partnering subunits to be retained in the endoplasmic reticulum, reflecting impaired forward trafficking. Interestingly although mutant and partnering wild type subunits could be coimmunoprecipitated, analytic centrifugation studies demonstrated decreased formation of pentameric receptors, suggesting that this residue played an important role in later steps of subunit oligomerization. We thus conclude that C-terminal motifs are also important determinants of Cys-loop receptor assembly.
    Digital Access Access Options
  • Article
    Anderson JP, Walker DE, Goldstein JM, de Laat R, Banducci K, Caccavello RJ, Barbour R, Huang J, Kling K, Lee M, Diep L, Keim PS, Shen X, Chataway T, Schlossmacher MG, Seubert P, Schenk D, Sinha S, Gai WP, Chilcote TJ.
    J Biol Chem. 2006 Oct 06;281(40):29739-52.
    A comprehensive, unbiased inventory of synuclein forms present in Lewy bodies from patients with dementia with Lewy bodies was carried out using two-dimensional immunoblot analysis, novel sandwich enzyme-linked immunosorbent assays with modification-specific synuclein antibodies, and mass spectroscopy. The predominant modification of alpha-synuclein in Lewy bodies is a single phosphorylation at Ser-129. In addition, there is a set of characteristic modifications that are present to a lesser extent, including ubiquitination at Lys residues 12, 21, and 23 and specific truncations at Asp-115, Asp-119, Asn-122, Tyr-133, and Asp-135. No other modifications are detectable by tandem mass spectrometry mapping, except for a ubiquitous N-terminal acetylation. Small amounts of Ser-129 phosphorylated and Asp-119-truncated alpha-synuclein are present in the soluble fraction of both normal and disease brains, suggesting that these Lewy body-associated forms are produced during normal metabolism of alpha-synuclein. In contrast, ubiquitination is only detected in Lewy bodies and is primarily present on phosphorylated synuclein; it therefore likely occurs after phosphorylated synuclein has deposited into Lewy bodies. This invariant pattern of specific phosphorylation, truncation, and ubiquitination is also present in the detergent-insoluble fraction of brain from patients with familial Parkinson's disease (synuclein A53T mutation) as well as multiple system atrophy, suggesting a common pathogenic pathway for both genetic and sporadic Lewy body diseases. These observations are most consistent with a model in which preferential accumulation of normally produced Ser-129 phosphorylated alpha-synuclein is the key event responsible for the formation of Lewy bodies in various Lewy body diseases.
    Digital Access Access Options
  • Article
    Hutchison S, LeBel C, Blanchette M, Chabot B.
    J Biol Chem. 2002 Aug 16;277(33):29745-52.
    In the heterogeneous nuclear ribonucleoprotein (hnRNP) A1 pre-mRNA, different regions in the introns flanking alternative exon 7B have been implicated in the production of the A1 and A1B mRNA splice isoforms. Among these, the CE1a and CE4 elements, located downstream of common exon 7 and alternative exon 7B, respectively, are bound by hnRNP A1 to promote skipping of exon 7B in vivo and distal 5' splice site selection in vitro. Here, we report that CE1a is flanked by an additional high affinity A1 binding site (CE1d). In a manner similar to CE1a, CE1d affects 5' splice site selection in vitro. Consistent with a role for hnRNP A1 in the activity of CE1d, a mutation that abrogates A1 binding abolishes distal 5' splice site activation. Moreover, the ability of CE1d to stimulate distal 5' splice site usage is lost in an HeLa extract depleted of hnRNP A/B proteins, and the addition of recombinant A1 restores the activity of CE1d. Notably, distal 5' splice site selection mediated by A1 binding sites is not compromised in an extract prepared from mouse cells that are severely deficient in hnRNP A1 proteins. In this case, we show that hnRNP A2 compensates for the A1 deficiency. Further studies with the CE4 element reveal that it also consists of two distinct portions (CE4m and CE4p), each one capable of promoting distal 5' splice site use in an hnRNP A1-dependent manner. The presence of multiple A1/A2 binding sites downstream of common exon 7 and alternative exon 7B probably plays an important role in maximizing the activity of hnRNP A1/A2 proteins.
    Digital Access Access Options