Today's Hours: 8:00am - 10:00pm

Search

Did You Mean:

Search Results

  • Article
    Priestley SC, Meredith KT, Treble PC, Cendón DI, Griffiths AD, Hollins SE, Baker A, Pigois JP.
    Sci Total Environ. 2020 May 15;717:135105.
    The isotopic composition of groundwater can be a useful indicator of recharge conditions and may be used as an archive to infer past climate variability. Groundwater from two largely confined aquifers in south-west Australia, recharged at the northernmost extent of the westerly wind belt, can help constrain the palaeoclimate record in this region. We demonstrate that radiocarbon age measurements of dissolved inorganic carbon are appropriate for dating groundwater from the Leederville aquifer and Yarragadee aquifer within the Perth Basin. Variations in groundwater δ18O values with mean residence time were examined using regional and flow line data sets, which were compared. The trends in the regional groundwater data are consistent with the groundwater flow line data supporting the hypothesis that groundwater δ18O is a robust proxy for palaeo-recharge in the Perth Basin. A comparison between modern groundwater and rainfall water isotopes indicates that recharge is biased to months with high volume and/or intense rainfall from the westerly wind circulation and that this has been the case for the last 35 ka. Lower stable water isotope values are interpreted to represent recharge from higher volume and/or more intense rainfall from 35 ka through the Last Glacial Maximum period although potentially modulated by changes in recharge thresholds. The Southern Perth Basin groundwater isotopic record also indicates a trend towards higher volume and/or intense rainfall during the Mid- to Late Holocene. The long-term stable water isotope record provides an understanding of groundwater palaeo-recharge. Knowledge of recharge dynamics over long time scales can be used to improve current water sharing plans and future groundwater model predictions.
    Digital Access Access Options
  • Article
    Wu X, Liu P, Huang H, Gao S.
    Sci Total Environ. 2020 May 15;717:137033.
    Adsorption of organic contaminants onto aged microplastics (MPs) may be important in understanding their transport potential and ecological risks in aquatic environment. Cations of Na+ and Ca2+ are common electrolytes in water, which can greatly influence the adsorption behavior of MPs by impacting the electrostatic interaction between MPs and organic contaminants. The results of this study showed that aged isotactic polypropylene (iPP) MPs exhibited higher adsorption capacity to triclosan (TCS) than pristine ones, and the sorption affinity was enhanced with the increase of ionic concentrations. The crucial influence of cations on the adsorption behavior of aged MPs mainly depended on the changed properties of TCS and interactions between MPs and TCS. Salting out effect induced the precipitation of TCS from water and facilitated the partition of TCS onto MPs in high salinity water. Besides, compressing electrostatic double layer of MPs via squeezing out effect and bridging effect between functional groups of aged MPs and contaminants may also be significant factors in the sorption process. These findings will be helpful for understanding the role of cations on the transport of pollutants, the fate of MPs and their associated environmental risks in aquatic ecosystems.
    Digital Access Access Options
  • Article
    Tolotti M, Cerasino L, Donati C, Pindo M, Rogora M, Seppi R, Albanese D.
    Sci Total Environ. 2020 May 15;717:137101.
    Mountain glacier shrinkage represents a major effect of the current global warming and 80-100% of the Alpine glaciers are predicted to vanish within the next few decades. As the thawing rate of mountain permafrost ice is much lower than for glacier ice, a shift from glacial to periglacial dynamics is predicted for Alpine landscapes during the 21st century. Despite the growing literature on the impacts of deglaciation on Alpine hydrology and ecosystems, chemical and biological features of waters emerging from Alpine rock glaciers (i.e. permafrost landforms composed by a mixture of ice and debris) have been poorly investigated so far, and knowledge on microbial biodiversity of headwaters is still sparse. A set of glacier-, rock glacier- and groundwater/precipitation-fed streams was investigated in the Italian Central Alps in late summer 2016, aiming at exploring bacterial community composition and diversity in epilithic and surface sediment biofilm and at verifying the hypothesis that rock glacier-fed headwaters represent peculiar ecosystems from both a chemical and biological point of view. Rock glacier-fed waters showed high values of electrical conductivity and trace elements related to their bedrock lithology, and their highly diverse bacterial assemblages significantly differed from those detected in glacier-fed streams. Bacterial taxonomic composition appeared to be mainly related to water and substrate type, as well as to water chemistry, the latter including concentrations of nutrients and trace metals. The results of this study confirm the chemical and biological peculiarity of rock glacier-fed waters compared to glacial waters, and suggest a potential driving role of thawing permafrost in modulating future ecological traits of Alpine headwaters within the context of progressing deglaciation.
    Digital Access Access Options
  • Article
    Jia H, Qian H, Zheng L, Feng W, Wang H, Gao Y.
    Sci Total Environ. 2020 May 15;717:137170.
    After a long-term surface irrigation in the southern edge of the Chinese Loess Plateau, the local groundwater is diluted to some extent, which differs from most of the other surface irrigation systems. Identifying the origin of groundwater salinity and determining the implications of irrigation can provide insights into the sustainable development of irrigation systems. In this study, a comprehensive investigation of groundwater, river water, canal water, and irrigation system was conducted. Our results suggest that the irrigation activities produce significant influence on the hydrochemistry of both river and groundwater. In the north-eastern part of the study area, hydrochemistry types are mainly HCO3-Na and HCO3∙SO4-Na types which is recharged by the river replenished by water transfer for irrigation. In the south-western part, groundwater is mainly HCO3-Na·Mg type which largely directly receives canal water recharge. The correlation between the irrigation water volume and the salinity variation confirms that mixing with fresh irrigation water which was derived from the reservoirs and the canals, during the irrigation period, dilutes the local groundwater. The natural hydrogeochemical processes of the loess aquifer suggest that the water-rock interactions and cation exchange process supply the excessive Na+ and other solutes to the groundwater, resulting HCO3-Na type water with high salinity. Additionally, the slow Groundwater flow and poor hydrologic cycle between the groundwater and the scarce rainfall promote natural salts accumulation. The δ18O and δD values indicate that modern rainfall may only account for small part of recharge to groundwater. In contrast, the irrigation water, as well as the canal and the reservoir seepage, contribute to a large proportion of groundwater recharge. The finding is beneficial for the policy-makers for the future water management schemes, in large surface irrigation systems, in order to achieve sustainable development goal.
    Digital Access Access Options
  • Article
    Liu L, Liu X, Ma X, Ning B, Wan X.
    Sci Total Environ. 2020 May 15;717:135232.
    BACKGROUND: Indoor air pollution emitted by smoky coal combustion in unventilated fire pits used to cause high lung cancer mortality in Xuanwei. Stove improvements were implemented from the 1970s to the 1980s. However, the present lung cancer mortality rate in Xuanwei shows almost no significant declining trend. Tobacco use is another established risk factor for lung cancer. Smoking prevalence and secondhand smoke (SHS) exposure rate are both high in Xuanwei. Therefore, in this study we evaluated the relationship among indoor air pollution over 30 years ago, tobacco use, and lung cancer risk, to further explore the competitive effects of these two risk factors.
    METHODS: A case-control study design was used. We constructed an unconditional logistic regression model to evaluate the relationship among indoor air pollution, tobacco use, and lung cancer risk, adjusting the covariates and with an interactive term between the two key variables. We further quantitatively assessed the maximum decrease in the indoor air pollution effect when facing competition from tobacco use via a sensitivity analysis. First, the effect of indoor air pollution on lung cancer without considering tobacco use was estimated. Then, we calculated a "bias factor" and divided the effect estimation by this factor.
    RESULTS: We found a strong delayed effect of indoor air pollution over 30 years ago in each subgroup with different tobacco use history. The effects of tobacco use were relatively small, but in areas without smoky coal combustion and indoor air pollution over 30 years prior, the lung cancer risk caused by tobacco use became much stronger and statistically significant. Moreover, we assessed that the effects of tobacco use on lung cancer could reduce a maximum of 18%-30% of the effects of indoor air pollution, but did not influence their statistical significance; the competitive effect from ever smoking was stronger than that from SHS exposure.
    CONCLUSIONS: At present in Xuanwei, delayed effect of the indoor air pollution over 30 years ago remains the major risk factor for lung cancer. Concomitantly, the adverse effect of tobacco use on lung cancer is becoming more apparent; local governments should start considering public health activities for smoking cessation promotion and SHS exposure prevention.
    Digital Access Access Options
  • Article
    Benez-Secanho FJ, Dwivedi P.
    Sci Total Environ. 2020 May 15;717:137218.
    A conservation easement (CE) legally places a permanent restriction on the development of a private land parcel, and in turn, can provide tax benefits to the landowner. We used the modular toolset InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) to quantify provision of five ecosystem services (ESs) (carbon storage, wildlife habitat quality, nitrogen, phosphorus, and sediment exports) provided by CEs and other land typologies (Simulated Parcels, 1 km Buffer area, Watershed Average, Federal, State and Local Protected Areas) within the Upper Chattahoochee Watershed (UCW), which provides 72% of drinking water to about six million residents of the Atlanta Metropolitan Area and is experiencing one of fastest urban growth of the United States. Simulated Parcels would represent the land cover of CEs if the development restrictions were not in place. We conducted the analysis for 2001, 2006, 2011 and 2016. We aggregated all ESs into one index. Overall, CEs provided higher levels of ESs relative to the Simulated Parcels, 1 km Buffer, Watershed Average, and Local Protected Areas. However, the ESs from CEs were lower relative to Federal and State Protected Areas. Our results suggest that CEs are effective in ensuring the continuance of ESs within the UCW.
    Digital Access Access Options
  • Article
    Holub P, Klem K, Tůma I, Vavříková J, Surá K, Veselá B, Urban O, Záhora J.
    Sci Total Environ. 2020 May 15;717:137058.
    We tested the hypothesis that application of stable forms of organic carbon (C) into the soil reduces leaching of nitrogen (N). We also examined the potential to estimate N leaching employing N-sensitive spectral reflectance indices. During three growing seasons 2013-2015, field experiment at two experimental sites combining application of distinct N doses (0 (N0), 35 (N35), 70 (N70), and 140 (N140) kg N ha-1) and two stable forms of organic C (lignohumate and compost) was established to measure N uptake by winter wheat and its leaching to subsoil layers. The spectral reflectance at canopy level was measured simultaneously with N content in leaf dry matter at the beginning of the grain filling phase. At full maturity, the above-ground biomass, grain yield, and grain protein content were evaluated. That data was used to calculate N uptake in grain. The N140 dose led to increased N uptake by grain of 64% and 73% in the wetter years 2013 and 2014, respectively, and even by 118% in the drier year 2015 in comparison with the N0 treatment. N leaching to subsoil increased substantially with higher N dose, but only in wetter years 2013 (by 74%) and 2014 (by 87%). By contrast, no effect of N dose on leached N was found in the dry year 2015. The application of organic C along with the N140 dose substantially reduced N leaching by 26% and 29% in 2014 and 2015, respectively. Moreover, we demonstrated that normalized red-edge spectral reflectance index (NRERI) is able to predict N uptake by wheat and it can serve as an indicator of N leaching in heavy-rainfall years. Our results thus point towards possible agronomic practices and use of remote-sensing techniques to reduce groundwater contamination by N-based fertilizers.
    Digital Access Access Options
  • Article
    Zhang H, Xu Y, Cheng S, Li Q, Yu H.
    Sci Total Environ. 2020 May 15;717:137134.
    Nitrate (NO3-) contamination in groundwater is an environmental problem worldwide. Partitioning the pollution into its sources is the key for effective controls. In this study, NO3- dual isotopic compositions (δ15N-NO3- and δ18O-NO3-) were measured in groundwater samples from 28 wells in an area with multiple land-uses, followed by the application of an isotope mixing model (SIAR) to identify the main NO3- sources and their biogeochemical processes. The results showed that denitrification was unlikely occur at significant rates, while nitrification was an important nitrogen transformation processes. Spatial variation of groundwater NO3- and its isotopic compositions was associated with the land-use types. Agricultural areas were characterized by relatively high NO3- concentrations and low δ15N-NO3- values. In contrast, industrial areas were characterized by enriched δ15N-NO3- and δ18O-NO3- values. In crop field, vegetable field and poultry and livestock breading farm, the proportional contribution represented a similar pattern with highest contribution from chemical fertilizer followed by soil organic nitrogen, manure, atmospheric precipitation and sewage in order. Nitrate in groundwater in industrial areas has different pattern of the proportional contribution, in which groundwater NO3- is largely influenced by sewage discharge and atmospheric precipitation. We concluded that the combination of isotopic analysis together with land-use information and chemical analysis was an effective approach for assessing the source apportionment and the fate of nitrate in the aquifer in multiple land-use areas.
    Digital Access Access Options
  • Article
    Vidal-Macua JJ, Nicolau JM, Vicente E, Moreno-de Las Heras M.
    Sci Total Environ. 2020 May 15;717:137250.
    Opencast mining is an activity that caters to many economic sectors; however, it has a large impact on society and the environment. After mining, the major concern is to restore the previous land cover, which was generally a natural vegetation cover. Establishing permanent vegetation cover can restore landscape connectivity and previous ecosystem functions, enhance aesthetic values and prevent off-side effects associated with post-mining landscapes. Opencast mining reclamation deals with these issues with several strategies that aim to develop a vegetation cover after mining activity has stopped. However, not all reclamation actions are effective, and assessing their efficiency by monitoring vegetation development at reclaimed sites is a time-consuming task because it usually involves extensive field work. In this study, we present a semi-automatic approach based on analysing satellite data (Landsat) time series and using a machine learning technique to identify suitable conditions for vegetation development at reclaimed opencast mines. We analysed the Teruel coalfield (Aragón, central-eastern Spain). This area is a representative Mediterranean-Continental region that is of particular interest due the diversity of reclamation actions that have been applied and the increase in drier conditions during the last decades. Conditions were described with topography derived variables, technical reclamation features and drought-occurrence variables as potential explanatory factors. The implemented approach allowed us to identify the main abiotic filters for vegetation of this geographic region: the water availability and soil retention (both controlled by the topographic slope), and the proximity to seed sources. The analysis evidenced the negative influence of drought occurrence on vegetation development, and different responses were found depending on the timescale at which drought is calculated. Our results indicate that the reclamation landform model is the main key factor influencing vegetation development. A model such as the smooth berm-slope increases water availability and controls soil erosion, and hence, improves vegetation development. In addition, we found that further than 500-600 m from the mine, the effect of seed source declines dramatically. Therefore, all these issues should be considered in future reclamation designs in a Mediterranean-Continental environment. Our methodology could be adapted to other geographic regions where spatial environmental data are available.
    Digital Access Access Options
  • Article
    Madureira J, Slezakova K, Silva AI, Lage B, Mendes A, Aguiar L, Pereira MC, Teixeira JP, Costa C.
    Sci Total Environ. 2020 May 15;717:137293.
    Accurate assessment of particulate matter (PM) dose and respiratory deposition is essential to better understand the risks of exposure to PM and, consequently, to develop the respective risk-control strategies. In homes, this is especially relevant in regards to ultrafine particles (UFP; <0.1 μm) which origin in these environments is mostly due to indoor sources. Thus, this study aimed to estimate inhalation doses for different PM mass/number size fractions (i.e., PM10, PM2.5 and UFP) in indoor air of residential homes and to quantify the deposition (total, regional and lobar) in human respiratory tract for both newborn children and mothers. Indoor real-time measurements of PM10, PM2.5 and UFP were conducted in 65 residential homes situated in Oporto metropolitan area (Portugal). Inhalation doses were estimated based on the physical characteristics of individual subjects and their activity patterns. The multi-path particle dosimetry model was used to quantify age-specific depositions in human respiratory tract. The results showed that 3-month old infants exhibited 4-fold higher inhalation doses than their mothers. PM10 were primarily deposited in the head region (87%), while PM2.5 and UFP depositions mainly occurred in the pulmonary area (39% and 43%, respectively). Subject age affected the pulmonary region and the total lung deposition; higher deposition being observed among the newborns. Similarly, lower lobes (left lobe: 37% and right lobe: 30%) received higher PM deposition than upper and middle lobes; right lobes lung are prone to be more susceptible to respiratory problems, since asymmetric deposition was observed. Considering that PM-related diseases occur at specific sites of respiratory system, quantification of site-specific particle deposition should be predicted in order to better evidence the respective health outcomes resulting from inhaled PM.
    Digital Access Access Options
  • Article
    Reche C, Viana M, van Drooge BL, Fernández FJ, Escribano M, Castaño-Vinyals G, Nieuwenhuijsen M, Adami PE, Bermon S.
    Sci Total Environ. 2020 May 15;717:137161.
    Potential adverse consequences of exposure to air pollutants during exercise include decreased lung function, and exacerbation of asthma and exercise-induced bronchoconstriction. These effects are especially relevant for athletes and during international competitions, as they may impact athletic performance. Thus, assessing and mitigating exposure to air pollutants during exercising should be encouraged in sports venues. A comprehensive air quality assessment was carried out during the World Relays Yokohama 2019, in the stadium and the warm-up track. The pilot included on-line and off-line instrumentation for gaseous and particulate pollutants and meteorological parameters, and the comparison with local reference data. Air quality perception and exacerbation of symptoms of already-diagnosed diseases (mainly respiratory and cardiovascular) were assessed by athletes by means of questionnaires during training sessions. Median NO2 concentrations inside the stadium (25.6-31.9 μgm-3) were in the range of the Yokohama urban background, evidencing the impact of urban sources (e.g., traffic) on athletes' exposure during training and competition. The assessment of hourly air pollutant trends was identified as a valuable tool to provide guidance to reduce atheletes' exposure, by identifying the periods of the day with lowest ambient concentrations. This strategy could be adopted to define training and competition schedules, and would have special added value for athletes with respiratory conditions. Personal exposure to polycyclic aromatic hydrocarbons was quantified through wearable silicone wristbands, and showed highly variability across volunteers. The wristbands are a simple approach to assess personal exposure to potentially toxic organic compounds. Further research would be necessary with regard to specific air pollutants that may trigger or exacerbate respiratory conditions typical of the athlete community. The availability of high time-resolved exposure data in the stadiums opens up the possibility to calculate doses of specific pollutants for individual athletes in future athletics events, to understand the impact of environmental factors on athletic performance.
    Digital Access Access Options
  • Article
    Wan X, Gu G, Lei M, Zeng W.
    Sci Total Environ. 2020 May 15;717:137240.
    Air pollution and its resulting health risks in Beijing City have been widely investigated by scientists and administrators. However, the health risks caused by willow and poplar catkins in April and May (known as "spring snow") have been rarely reported. Poplar and willow are the two common trees in Beijing City that generate many whirling catkins in the air. The chemical composition of catkins remains unknown. In this study, catkins and dust samples were collected in several parks in Beijing. The total concentrations of metals/metalloids in catkins measured through inductively coupled plasma mass spectrometry were generally lower than those of the corresponding dust samples, and they were lower than the risk control standard for soil contamination of development land. The simulated rain and lung fluid extraction rates of catkin samples were significantly higher than those of the dust samples. The concentration of extracted Pb and Zn using simulated rainwater exceeded the environmental quality standards for surface water (0.1 and 2.0 mg/L for Pb and Zn, respectively), indicating the possibility of runoff pollution. Scanning electron microscopy images showed that fine particles (<10 μm) are attached to the surface of catkins. Therefore, the metals/metalloids in fine particles adsorbed by the catkin samples possess higher bioaccessibility than that in the dust samples based on different sizes of particles. A significant correlation is found between Pb in catkin and Pb in dust. Therefore, attention should be paid to the possible increase in metal/metalloid concentrations in catkins planted in contaminated areas.
    Digital Access Access Options
  • Article
    Galhardi JA, Leles BP, de Mello JWV, Wilkinson KJ.
    Sci Total Environ. 2020 May 15;717:134484.
    In order to assess the environmental risks related to mining activities in Southern Brazil, the transfer of trace metals and rare earth elements (REE) from soils to soybeans was evaluated in a U-rich area associated with coal mining. In some samples, As, Ba, Co, Cu and Ni were higher than the guidelines proposed by the Brazilian environmental agency. Soil, coal, ash, tailings and soybean were systematically sampled so that the chemical fractionation/speciation of the elements could be related to their bioavailability. In addition to total concentrations quantified by ICP-MS after microwave digestion, elemental measurements were made following different evaluations of the bioavailable metal, including chemical extractions (10 mM Ca(NO3)2 and 3-step sequential extraction), diffusive gradient in thin films technique (DGT) and chemical modeling (WHAM-free ion). Lower pH and higher clay and organic matter content were reflected by higher metal assimilation by the plants, especially by the roots and leaves. The bioaccumulation factor (BF) was generally higher for the leaves (e.g. Cu, Mn, Sr, Zn, Ba, REE with exception of Tm and Yb) and roots (e.g. Cd, Th and U). The results revealed that for Ba, Cd, Sr, Pb, U and most of the REE, the free ion concentration was strongly correlated with the metal content in the plants, especially for the grains. Values obtained by DGT were also correlated with the bioavailable portion of Ba, Mn, Sr, Zn, Pb, U and REE. Measurements obtained from Ca extractions correlated well with the bioavailable metals for Ba, Cd, Sr, Rb, Pb and Th. The free or extractable metal fractions gave much better correlations of the bioavailable fractions than did the total metal concentrations from the soils, especially for the REE. The paper validates some simplified means of estimating the risks associated with metals and REE in tropical soils affected by mining activities.
    Digital Access Access Options
  • Article
    Rafiq MK, Bai Y, Aziz R, Rafiq MT, Mašek O, Bachmann RT, Joseph S, Shahbaz M, Qayyum A, Shang Z, Danaee M, Long R.
    Sci Total Environ. 2020 May 15;717:135296.
    Previous biochar research has primarily focused on agricultural annual cropping systems with very little attention given to highly fragile, complex and diverse natural alpine grassland ecosystems. The present study investigated the effect of biochar on the growth of alpine meadows and soil health. This study was conducted in the Qinghai Tibetan Plateau over a three year period to investigate the effect of three rice husk biochar application rates alone and combination with high and low NPK fertilizer dosages on alpine meadow productivity, soil microbial diversity as well as pH, carbon and nitrogen content at 0-10 cm and 10-20 cm depth. At the end of the 3rd year soil samples were analysed and assessed by combined analysis of variance. The results showed that biochar application in combination with nitrogen (N), phosphorus (P) and potassium (K) fertilizer had a significant increase in fresh and dry biomass during the second and third year of the study as compared to control and alone biochar application (p ≤ 0.05). Biochar alone and in combination with NPK fertilizer resulted in a significant increase in the soil pH and carbon contents of the soil. XPS results, the SEM imaging and EDS analysis of aged biochar demonstrated that the biochar has undergone complex changes over the 3 years as compared to fresh biochar. This research suggests that biochar has positive effect on alpine meadow growth and soil health and may be an effective tool for alpine meadow restoration.
    Digital Access Access Options
  • Article
    Shi Y, Jiang Y, Wang S, Wang X, Zhu G.
    Sci Total Environ. 2020 May 15;717:137257.
    Comammox, the microbial group capable of completely oxidizing ammonia to nitrate, challenged the traditional two-step nitrification process where ammonia is oxidized by ammonia-oxidizing archaea (AOA) and bacteria (AOB), and nitrite by nitrite-oxidizing bacteria (NOB). However, the distribution of comammox bacteria in various habitats and their potential environmental drivers remain poorly understood. Using qPCR and high-throughput sequencing approach, we analyzed the abundance and community patterns of comammox from 38 samples taken from five different habitat types including paddy fields in Shaoguan and Antu, the wheat fields, river, and grassland in the Qinghai-Tibet Plateau, and the fringe and central riparian zones of Chaohu Lake of China during winter and summer. Comammox bacteria were detected in all samples, with Ca. N. nitrificans dominating the community, followed by Ca. N. nitrosa. Generally, in paddy fields of Shaoguan and Antu, ammonia (NH4+) was the key factor affecting comammox bacteria. However, in wheat fields, river and grassland of the Qinghai-Tibet Plateau, altitude was the strongest factor affecting comammox bacteria. In Chaohu Lake, comammox bacteria showed temporal heterogeneity, being higher in winter than summer, especially in the fringe riparian zone. Our results suggest that comammox is widespread in diverse habitats and exhibit niche partitioning, and can be affected by different environmental factors that may vary by habitat.
    Digital Access Access Options
  • Article
    Cerdà-Domènech M, Frigola J, Sanchez-Vidal A, Canals M.
    Sci Total Environ. 2020 May 15;717:134778.
    X-ray fluorescence core scanners (XRF-CS) allow rapid, non-destructive, continuous and high-resolution analyses of the elemental composition of sediment cores, providing large sets of semi-quantitative data. These data can be converted to quantitative data through the linear regression approach using a relatively small number of discrete samples analyzed by techniques providing absolute concentrations. However, a precise characterization of the errors associated with the linear function is required to evaluate the quality of the calibrated element concentrations. Here we present a calibration of high-resolution XRF-CS for six metals (Ti, Mn, Fe, Zn, Pb and As) measured in heavily contaminated marine deposits so that absolute concentrations are obtained. In order to determine the best linear function for conversion of XRF data, we have tested three regression methods: the ordinary least-squares (OLS), which does not consider the standard error in any variable (x and y), the weighted ordinary least-squares (WOLS), which considers the weighted standard error of the vertical variable (y), and the weighted least-squares (WLS), which incorporates the standard error in both x and y variables. We demonstrate that the calibration method presented in this study significantly increases the correlation coefficient, higher than r2 = 0.94, and reduces both the data deviation and the errors of the linear function for the three regression methods. Nonetheless, the WLS appears as the best regression method to minimize errors in the calibrated element concentrations. Our results open the door to use calibrated XRF-CS data to evaluate marine sediment pollution according to the levels of the strictest sediment quality guidelines (SQG) with errors lower than 0.4%-2% for Fe, 1%-7% for Zn, 3-14% for Pb and 5%-16% for Mn. They highlight the robustness of the calibration procedure here presented for accurate and precise quantification of element concentrations from XRF-CS semi-quantitative data.
    Digital Access Access Options
  • Article
    Scanlon BR, Reedy RC, Xu P, Engle M, Nicot JP, Yoxtheimer D, Yang Q, Ikonnikova S.
    Sci Total Environ. 2020 May 15;717:137085.
    There is increasing interest in beneficial uses of large volumes of wastewater co-produced with oil and gas extraction (produced water, PW) because of water scarcity, potential subsurface disposal limitations, and regional linkages to induced seismicity. Here we quantified PW volumes relative to water demand in different sectors and PW quality relative to treatment and reuse options for the major U.S. shale oil and gas plays. PW volumes from these plays totaled ~600 billion liters (BL, 160 billion gallons, Bgal) in 2017. One year of PW is equal to ~60% of one day of freshwater use in the U.S. For these plays, the total irrigation demand exceeded PW volumes by ~5× whereas municipal demand exceeded PW by ~2×. If PW is reused for hydraulic fracturing (HF) within the energy sector, there would be no excess PW in about half of the plays because HF water demand exceeds PW volumes in those plays. PW quality can be highly saline with median total dissolved solids up to 255 g/L in the Bakken play, ~7× seawater. Intensive water treatment required for PW from most unconventional plays would further reduce PW volumes by at least 2×. Desalination would also result in large volumes of salt concentrates, equivalent to ~3000 Olympic swimming pools in the Permian Delaware Basin in 2017. While water demands outside the energy sector could accommodate PW volumes, much lower PW volumes relative to water demand in most regions would not substantially alleviate water scarcity. However, large projected PW volumes relative to HF water demand over the life of the play in the Permian Delaware Basin may provide a substantial new water source for beneficial use in the future. Large knowledge gaps in PW quality, lack of appropriate regulations, and economic factors currently preclude beneficial uses outside the energy sector in most regions.
    Digital Access Access Options
  • Article
    Chen S, Huang J, Xiao T, Gao J, Bai J, Luo W, Dong B.
    Sci Total Environ. 2020 May 15;717:137193.
    The GHGs contributions (tally by carbon emissions) during treatment of domestic food waste and residual waste from pilot communities (contained 2365 families) in Shanghai, China, under different Modes induced by garbage classification were investigated. It was found that under the present condition of garbage classification in Shanghai, 51.8% of the food waste could be separated finally. With garbage classification, the load of landfill was saved by 17.3% (Mode 2) and 16.5% (Mode 3), the moisture of garbage for incineration was reduced by 13.6%, and the lower heating value (LHV) of garbage was increased by 16.2%. Applying the life-cycle assessment (LCA) methodology and Life Cycle Inventory (LCI) with material flows, net carbon emissions during the treatment of garbage were found to be in the following order: Mode 3 (1.60 × 10-3 kg CE/kg waste) < Mode 2 (4.85 × 10-3 kg CE/kg waste) < Mode 1 (4.94 × 10-3 kg CE/kg waste) < landfill (1.49 × 10-2 kg CE/kg waste). Mode 2 and Mode 3 were replaceable patterns of Mode 1, and anaerobic digestion was the recommendable strategy to recover energy from food waste. Especially, there was no obvious benefit of increasing the separation proportion of food waste to 60% (or above) for reducing net carbon emissions in the following treatment processes.
    Digital Access Access Options
  • Article
    Song J, Zhang Y, Zhang Y, Yuan Q, Zhao Y, Wang X, Zou S, Xu W, Lai S.
    Sci Total Environ. 2020 May 15;717:134754.
    We present the characteristics of non-methane hydrocarbons (NMHCs) over the northern South China Sea (SCS) during a cruise campaign from September to October 2013. The mixing ratios of the total NMHCs ranged from 1.45 to 7.13 ppbv with an average of 3.54 ± 1.81 ppbv. Among the measured NMHCs, alkanes and aromatics were the major groups, accounting for 45.8 ± 8.7% and 28.7 ± 12.3% of the total NMHCs, respectively. Correlations of NMHCs with typical source tracers suggest that light alkanes and benzene were largely contributed by vehicular exhaust via long-range transport, while the other aromatics might be related to industrial sources and marine ship emissions. The spatial variations of NMHCs were observed with higher mixing ratios of NMHCs in the samples collected in the offshore areas than those in the coastal areas. Air mass back-trajectory analysis and diagnostic ratios of NMHCs show that the elevations of the total NMHCs were caused by the regional pollution transport from the southeast coast of China and/or southern China. The ozone formation potentials (OFPs) of NMHCs were calculated and the results show that the aromatics associated with marine ship emissions were the important contributors to the total OFP. This study provides useful information on the interaction between continental outflow and marine atmosphere.
    Digital Access Access Options
  • Article
    Yu C, Feng J, Liu K, Wang G, Zhu Y, Chen H, Guan D.
    Sci Total Environ. 2020 May 15;717:137142.
    Carbon storage is one of the main objectives for mangrove afforestation. Planting of the exotic species Sonneratia apetala can rapidly increase the mangrove area and biomass. Here, we studied the change in vegetation and the soil carbon stocks along the chronosequence of S. apetala plantations in Qi'ao Island, China. Five sites, including rehabilitated S. apetala of different ages (1, 4, 9, and 15 years) and 40-year-old mature native Kandelia obovata forests were investigated. Vegetation biomass and the soil carbon content from 0 to 100 cm were analyzed. The ecosystem carbon density (vegetation and soil) was then calculated. A positive and linear relationship was observed between the vegetation carbon stocks and age of S. apetala. The 15-year-old S. apetala already had a similar biomass to 40-year-old K. obovata. However, its soil and ecosystem carbon densities remained lower than those of K. obovata. Different from K. obovata, the majority of the biomass of S. apetala was reserved within the stem. Mature K. obovata had a larger proportion of soil carbon stock to ecosystem carbon stock. S. apetala can accumulate biomass rapidly, but it had a lower ecosystem carbon stock than the native mature K. obovata.
    Digital Access Access Options