Today's Hours: 8:00am - 8:00pm

Search

Did You Mean:

Search Results

  • Article
    Xin X, Liu HY, Ye M, Lin Z.
    Nanoscale. 2013 Nov 21;5(22):11220-6.
    By combining the ease of producing ZnO nanoflowers with the advantageous chemical stability of TiO2, hierarchically structured hollow TiO2 flower-like clusters were yielded via chemical bath deposition (CBD) of ZnO nanoflowers, followed by their conversion into TiO2 flower-like clusters in the presence of TiO2 precursors. The effects of ZnO precursor concentration, precursor amount, and reaction time on the formation of ZnO nanoflowers were systematically explored. Dye-sensitized solar cells fabricated by utilizing these hierarchically structured ZnO and TiO2 flower clusters exhibited a power conversion efficiency of 1.16% and 2.73%, respectively, under 100 mW cm(-2) illumination. The intensity modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS) studies suggested that flower-like structures had a fast electron transit time and their charge collection efficiency was nearly 100%.
    Digital Access Access Options
  • Article
    Kędra A, Plandowska M, Kędra P, Czaprowski D.
    PeerJ. 2021;9:e11220.
    BACKGROUND: Carrying a schoolbag is a daily activity for most children and adolescents.The perception of a schoolbag's weight depends upon the individual and is a relevant theme in schoolchildren. Describing the association between the perception of heaviness in carrying a schoolbag and NLBP can facilitate the planning of preventive programs, quite different from those based on specific weight limits for schoolbags in children and youth.
    OBJECTIVE: To determine the prevalence of non-specific low back pain (NLBP) and to analyse the association between the perception of heaviness in carrying of schoolbags and NLBP in Polish children and youth aged 10-19.
    METHODS: This study included 11,423 children and youth (6,252 girls and 5,171 boys) from Poland. An original questionnaire was used to assess NLBP prevalence.
    RESULTS: Among 11,423 of the respondents, 41.5% of the respondents admitted that they had experienced NLBP in the period of the last 12 months. The percentage of individuals reporting NLBP increased with age of participants, p < 0.001. Girls reported NLBP more often than boys (p < 0.001). Students with NLBP declared that their school backpack was heavy more often than students without LBP. Students who thought that their backpacks weighed too much manifested a 1.44 (95% Cl [1.33-1.55]) times higher probability to experience NLBP.
    CONCLUSION: In the examined group of schoolchildren a frequent occurrence of NLBP (41.5%) was noted. Its occurrence was related to female sex and age. Students who thought that their backpacks weighed too much manifested higher probability to develop NLBP.
    Digital Access Access Options
  • Article
    Lukowicz T, Benazzouz A, Nardello-Rataj V, Aubry JM.
    Langmuir. 2015 Oct 20;31(41):11220-6.
    The equivalent alkane carbon numbers (EACNs) of 20 polar hydrocarbon oils are determined by the fishtail method. These values supplemented by 43 already reported EACNs of other hydrocarbons are rationalized by using the COSMO-RS σ-moments as descriptors for a QSPR analysis. A reliable model, with only two meaningful physicochemical parameters, namely the surface area (M0(X)) and the overall polarity (M2(X)) of the oil X, is able to predict the EACN values of a large variety of oils including (cyclo)alkanes, (cyclo)alkenes, terpenes, aromatics, alkynes, and chloroalkanes and to rationalize structural effects on EACNs. Furthermore, the dependence of the EACN of homologous oils on the chain length provides some molecular insight into how the different oils penetrate into the interfacial film of surfactants.
    Digital Access Access Options
  • Article
    Tamire C, Elias E, Argaw M.
    Heliyon. 2022 Nov;8(11):e11220.
    Soil loss is one of the major challenges for agricultural production in the Ethiopian highlands. The rate and distribution of soil loss (SL) and sediment export (SE) are essential to map degradation "hotspot" areas for prioritizing soil and water conservation measures. The objective of this study was to estimate the dynamics of SL and SE in the Upper Bilate River Catchment of Central Ethiopia. The Sediment Delivery Ratio (SDR) module of the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model was used to estimate and map SL and SE. The primary input data were rainfall, soil data, land use, and other biophysical parameters of the study area. The model output confirmed that the average total soil loss of the catchment was 36.8 million ton/yr. It is modeled that soil loss doubles within 30 years. The average annual sediment export was about 3.62 ton/ha/yr. The mean annual soil loss of the study area was 23 ton/ha/yr, which exceeded the soil loss tolerance (SLT), estimated to range between (2-18 ton/ha/yr) in Ethiopia. Based on the soil erosion risk level, about 22% of the catchment area was classified as severely degraded, while 62 % was moderately degraded. Severe soil erosion prevails in the sub-watershed (SW)-5, SW-4, and SW-13. Therefore, these sub-watersheds need priority conservation action to restore the ecosystem processes of the study area.
    Digital Access Access Options
  • Article
    Ito Y, Kohno Y, Nakamura N, Ohno H.
    Chem Commun (Camb). 2012 Nov 25;48(91):11220-2.
    The saturated water content in a hydrophobic ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)-imide, was improved from 0.4 wt% to 17.8 wt% by adding a 3-(1-butyl-3-imidazolio)propanesulfonate-type zwitterion in appropriate amounts. The mixture containing 17.8 wt% water successfully dissolved horse heart cytochrome c without significant change of the higher ordered structure.
    Digital Access Access Options
  • Article
    Strianese M, Palm GJ, Milione S, Kühl O, Hinrichs W, Pellecchia C.
    Inorg Chem. 2012 Nov 05;51(21):11220-2.
    Fluorescently labeled cobalt peptide deformylase (Co-PDF) can be efficiently used as a fluorescence-resonance-energy-transfer-based sensing device for hydrogen sulfide (H(2)S). The proof of concept of our sensor system is substantiated by spectroscopic, structural, and theoretical results. Monohydrogen sulfide coordination to Co-PDF and Ni-PDF was verified by X-ray crystallography. Density functional theory calculations were performed to gain insight into the characteristics of the coordination adduct between H(2)S and the cobalt cofactor in Co-PDF.
    Digital Access Access Options
  • Article
    do Nascimento LG, Fialho AM, de Andrade JDSR, de Assis RMS, Fumian TM.
    Sci Rep. 2022 07 02;12(1):11220.
    Human adenovirus (HAdV) types F40/41 have long been recognized as major viral agents of acute gastroenteritis (AGE) in children. Despite this, studies on HAdV molecular epidemiology are sparse, and their real impact is likely under-estimated. Thus, our goal was to investigate HAdV incidence, enteric and non-enteric types circulation, co-detections with rotavirus and norovirus and DNA shedding in stool samples from inpatients and outpatients from eleven Brazilian states. During the three-year study, 1012 AGE stool samples were analysed by TaqMan-based qPCR, to detect and quantify HAdV. Positive samples were genotyped by partial sequencing of the hexon gene followed by phylogenetic analysis. Co-detections were accessed by screening for rotavirus and norovirus. Overall, we detected HAdV in 24.5% of single-detected samples (n = 248), with a prevalence of type F41 (35.8%). We observed a higher incidence in children between 6 to 24 months, without marked seasonality. Additionally, we observed a statistically higher median viral load among single-detections between enteric and non-enteric types and a significantly lower HAdV viral load compared to rotavirus and norovirus in co-detections (p < 0.0001). Our study contributes to the knowledge of HAdV epidemiology and reinforces the need for the inclusion of enteric types F40/41 in molecular surveillance programs.
    Digital Access Access Options
  • Article
    Zhou Z, Chen X, Li Z, Wang X, Zhang M.
    Sci Rep. 2021 05 27;11(1):11220.
    NK/T cell lymphoma (NKTCL) represents an aggressive lymphoid malignancy characterized by dismal prognosis. Immune-checkpoint blockade has shown promising efficacy in NKTCL. However, the molecular mechanisms underlying immune evasion in NKTCL have never been explored. Here, proteomic analysis was used to identify the differentially expressed proteins between NKTCL patients and healthy individuals. We found that S100A9, an immunosuppressive molecule, was much higher in NKTCL patients both in serum and tumor stroma. Elevated level of S100A9 was associated with advanced stage, poor overall response and early recurrence. Moreover, percentage of myeloid-derived suppressor cells (MDSCs) in peripheral blood was positively correlated with levels of S100A9. Low concentration of S100A9 promoted proliferation of NKTCL cells, while did not affect cell apoptosis and cell cycles. Furthermore, programmed death ligand 1 (PD-L1) expression on NKTCL cells was up-regulated by S100A9 through activation of ERK1/2 signaling. Inhibition of ERK1/2 signaling significantly decreased tumor growth and PD-L1 expression induced by S100A9. In conclusion, our research firstly identified S100A9 as an immune suppressor in the tumorigenesis of NKTCL via accumulation of MDSCs and upregulation of PD-L1 expression. S100A9 may serve as a potential target to increase the efficacy of immunotherapy in NKTCL.
    Digital Access Access Options
  • Article
    Corniola MV, Lemée JM, Meling TR.
    Sci Rep. 2020 07 08;10(1):11220.
    Atypical or malignant transformation (AT/MT) has been described in WHO grade I meningiomas. Our aim was to identify predictive factors of AT/MT at recurrence. A total of N = 15 WHO grade increases were observed in N = 13 patients (0.96% of the study population, risk of transformation of 0.12% per patient-year follow-up). Patients with and without progression at recurrence were similar regarding age, gender distribution, skull-base location, bone infiltration, and Simpson grades. Recurrence-free survival was lower in patients with transformation (5 ± 4.06 years versus 7.3 ± 5.4 years; p = 0.03). Among patient age, gender, skull base location, extent of resection or post-operative RT, no predictor of AT/MT was identified, despite a follow-up of 10,524 patient-years. The annual risk of transformation of WHO grade I meningiomas was 0.12% per patient-year follow-up. Despite the important number of patients included and their extended follow-up, we did not identify any risk factor for transformation. A total of 1,352 patients with surgically managed WHO grade I meningioma from a mixed retro-and prospective database with mean follow-up of 9.2 years ± 5.7 years (0.3-20.9 years) were reviewed. Recurring tumors at the site of initial surgery were considered as recurrence.
    Digital Access Access Options
  • Article
    Chapeton-Montes D, Plourde L, Bouchier C, Ma L, Diancourt L, Criscuolo A, Popoff MR, Brüggemann H.
    Sci Rep. 2019 08 02;9(1):11220.
    Clostridium tetani produces a potent neurotoxin, the tetanus neurotoxin (TeNT) that is responsible for the worldwide neurological disease tetanus, but which can be efficiently prevented by vaccination with tetanus toxoid. Until now only one type of TeNT has been characterized and very little information exists about the heterogeneity among C. tetani strains. We report here the genome sequences of 26 C. tetani strains, isolated between 1949 and 2017 and obtained from different locations. Genome analyses revealed that the C. tetani population is distributed in two phylogenetic clades, a major and a minor one, with no evidence for clade separation based on geographical origin or time of isolation. The chromosome of C. tetani is highly conserved; in contrast, the TeNT-encoding plasmid shows substantial heterogeneity. TeNT itself is highly conserved among all strains; the most relevant difference is an insertion of four amino acids in the C-terminal receptor-binding domain in four strains that might impact on receptor-binding properties. Other putative virulence factors, including tetanolysin and collagenase, are encoded in all genomes. This study highlights the population structure of C. tetani and suggests that tetanus-causing strains did not undergo extensive evolutionary diversification, as judged from the high conservation of its main virulence factors.
    Digital Access Access Options
  • Article
    Hultquist JF, Lengyel JA, Refsland EW, LaRue RS, Lackey L, Brown WL, Harris RS.
    J Virol. 2011 Nov;85(21):11220-34.
    Successful intracellular pathogens must evade or neutralize the innate immune defenses of their host cells and render the cellular environment permissive for replication. For example, to replicate efficiently in CD4(+) T lymphocytes, human immunodeficiency virus type 1 (HIV-1) encodes a protein called viral infectivity factor (Vif) that promotes pathogenesis by triggering the degradation of the retrovirus restriction factor APOBEC3G. Other APOBEC3 proteins have been implicated in HIV-1 restriction, but the relevant repertoire remains ambiguous. Here we present the first comprehensive analysis of the complete, seven-member human and rhesus APOBEC3 families in HIV-1 restriction. In addition to APOBEC3G, we find that three other human APOBEC3 proteins, APOBEC3D, APOBEC3F, and APOBEC3H, are all potent HIV-1 restriction factors. These four proteins are expressed in CD4(+) T lymphocytes, are packaged into and restrict Vif-deficient HIV-1 when stably expressed in T cells, mutate proviral DNA, and are counteracted by HIV-1 Vif. Furthermore, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H of the rhesus macaque also are packaged into and restrict Vif-deficient HIV-1 when stably expressed in T cells, and they are all neutralized by the simian immunodeficiency virus Vif protein. On the other hand, neither human nor rhesus APOBEC3A, APOBEC3B, nor APOBEC3C had a significant impact on HIV-1 replication. These data strongly implicate a combination of four APOBEC3 proteins--APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H--in HIV-1 restriction.
    Digital Access Access Options
  • Article
    Boles MA, Engel M, Talapin DV.
    Chem Rev. 2016 Sep 28;116(18):11220-89.
    Chemical methods developed over the past two decades enable preparation of colloidal nanocrystals with uniform size and shape. These Brownian objects readily order into superlattices. Recently, the range of accessible inorganic cores and tunable surface chemistries dramatically increased, expanding the set of nanocrystal arrangements experimentally attainable. In this review, we discuss efforts to create next-generation materials via bottom-up organization of nanocrystals with preprogrammed functionality and self-assembly instructions. This process is often driven by both interparticle interactions and the influence of the assembly environment. The introduction provides the reader with a practical overview of nanocrystal synthesis, self-assembly, and superlattice characterization. We then summarize the theory of nanocrystal interactions and examine fundamental principles governing nanocrystal self-assembly from hard and soft particle perspectives borrowed from the comparatively established fields of micrometer colloids and block copolymer assembly. We outline the extensive catalog of superlattices prepared to date using hydrocarbon-capped nanocrystals with spherical, polyhedral, rod, plate, and branched inorganic core shapes, as well as those obtained by mixing combinations thereof. We also provide an overview of structural defects in nanocrystal superlattices. We then explore the unique possibilities offered by leveraging nontraditional surface chemistries and assembly environments to control superlattice structure and produce nonbulk assemblies. We end with a discussion of the unique optical, magnetic, electronic, and catalytic properties of ordered nanocrystal superlattices, and the coming advances required to make use of this new class of solids.
    Digital Access Access Options
  • Article
    Dratcu L, Boland X.
    Cureus. 2020 Oct 28;12(10):e11220.
    COVID-19 has a benign outcome in most cases, yet it can also be fatal and no specific treatment is available as of yet. Older age and several medical comorbidities are risk factors for COVID-19 complications. We report on an elderly man with a longstanding history of bipolar affective disorder associated with heavy smoking, alcohol abuse and multiple comorbidities, including severe chronic obstructive pulmonary disease and recurrent pulmonary sepsis, who contracted COVID-19 during his inpatient treatment of a manic episode, and who fully recovered from COVID-19 without any need for respiratory support. We discuss how his excessive use of nicotine replacement therapy may have contributed to his emerging unscathed from COVID-19. Nicotine, an α7-nACh receptor agonist, may boost the cholinergic anti-inflammatory pathway and hinder the uncontrolled overproduction of pro-inflammatory cytokines triggered by the SARS-CoV-2 virus, which is understood to be the main pathway to poor outcomes and death in severe COVID-19.
    Digital Access Access Options
  • Article
    Goskulwad S, La DD, Kobaisi MA, Bhosale SV, Bansal V, Vinu A, Ariga K, Bhosale SV.
    Sci Rep. 2018 07 25;8(1):11220.
    The design of new chiral chromophores that allow tunable assembly of higher order helical structures by using natural stimuli offers promising avenue in understanding various biological processes. In particular, access to dynamic multistimuli-responsive systems can provide real-time monitoring of chiral transformation in chemical and biological systems. We report on the synthesis of naphthalenediimide appended L-glutamate (NDI-L-Glu) that self-assembles into chiral supramolecular structures under physiological conditions. Specifically, NDI-L-Glu shows a mixture of left- and right-handed helices under physiological conditions, and any deviation from the ambient biochemical environment has a remarkable influence on the chirality of these structures. For instance, acidic environments shift the helicity to left-handedness while the alkaline conditions reversed the helical structures to right-handedness, thereby mimicking the molecular virulence mechanism of tobacco mosaic virus (TMV). The chirality of these supramolecular assemblies can also be controllably tuned by using temperature as an external stimulus, allowing reversible flip of helicity.
    Digital Access Access Options
  • Article
    Song J, Fang Q, Luo X, Cai H, Liow TY, Yu MB, Lo GQ, Kwong DL.
    Opt Express. 2011 Jun 06;19(12):11220-7.
    In this work, we design and demonstrate planar ridge microdisk resonators in silicon-on-insulator, which assemble the advantages of microring and microdisk resonators. The dependences of resonator optical modes on the slab thickness and the waveguide-to-resonator coupling gap are investigated. The highest Q-factor obtained is ~4 × 10(5). Using the thermo-optical effect, we attain a resonance wavelength tuning efficiency of ~66.5 pm/mW. We also compare the transmission spectra measured by using wavelength-scanning method and voltage-scanning method and show potential application for the adopted voltage-scanning method.
    Digital Access Access Options
  • Article
    Oh YS, Choi H, Lee J, Lee H, Choi DY, Lee SU, Yun KS, Yoo S, Kim TS, Park I, Sung HJ.
    Sci Rep. 2017 09 11;7(1):11220.
    Next-generation transparent conductors (TCs) require excellent electromechanical durability under mechanical deformations as well as high electrical conductivity and transparency. Here we introduce a method for the fabrication of highly conductive, low-porosity, flexible metal grid TCs via temperature-controlled direct imprinting (TCDI) of Ag ionic ink. The TCDI technique based on two-step heating is capable of not only stably capturing the Ag ionic ink, but also reducing the porosity of thermally decomposed Ag nanoparticle structures by eliminating large amounts of organic complexes. The porosity reduction of metal grid TCs on a glass substrate leads to a significant decrease of the sheet resistance from 21.5 to 5.5 Ω sq-1 with an optical transmittance of 91% at λ = 550 nm. The low-porosity metal grid TCs are effectively embedded to uniform, thin and transparent polymer films with negligible resistance changes from the glass substrate having strong interfacial fracture energy (~8.2 J m-2). Finally, as the porosity decreases, the flexible metal grid TCs show a significantly enhanced electromechanical durability under bending stresses. Organic light-emitting diodes based on the flexible metal grid TCs as anode electrodes are demonstrated.
    Digital Access Access Options
  • Article
    Eitel M, Osigus HJ, Brenzinger B, Wörheide G.
    Ecol Evol. 2024 Apr;14(4):e11220.
    The marine animal phylum Placozoa is characterized by a poorly explored cryptic biodiversity combined with very limited knowledge of their ecology. While placozoans are typically found as part of the epibenthos of coastal waters, known placozoan predators, namely small, shell-less sea slugs belonging to the family Rhodopidae (Mollusca: Gastropoda: Heterobranchia), inhabit the interstitium of seafloor sediment. In order to gain further insights into this predator-prey relationship and to expand our understanding of placozoan ecological niches, we screened publicly available whole-body metagenomic data from two rhodopid specimens collected from coastal sediments. Our analysis not only revealed the signatures of three previously unknown placozoan lineages in these sea slug samples but also enabled the assembly of three complete and two partial mitochondrial chromosomes belonging to four previously described placozoan genera, substantially extending the picture of placozoan biodiversity. Our findings further refine the molecular phylogeny of the Placozoa, corroborate the recently established taxonomic ranks in this phylum, and provide molecular support that known placozoan clades should be referred to as genera. We finally discuss the main finding of our study - the presence of placozoans in the sea floor sediment interstitium - in the context of their ecological, biological, and natural history implications.
    Digital Access Access Options
  • Article
    Li Q, Sun Q, Zhu B.
    Onco Targets Ther. 2020;13:11211-11220.
    OBJECTIVE: Oral squamous cell carcinoma (OSCC) is one of the most common cancers, accounting for over 90% of malignant lesions in the oral cavity. Long non-coding RNAs play an important role in the development of OSCC. This study aimed to investigate the effects of lncRNA XIST on the malignant behaviors of OSCC cells and its possible molecular mechanisms.
    METHODS: Real-time quantitative PCR and Western blot were used to detect the RNA and protein level, respectively. CAL27 and SCC25 cells with the lowest expression level of XIST were used for further study. MTT, transwell assay, colony formation, and xenograft model were applied to examine the effect of XIST on the progression of OSCC. FISH assay was performed to investigate the co-location of XIST and miR-455-3p in OSCC cells. The bioinformatics analysis, luciferase, and RNA pull down assay were utilized to predict and verify the target genes of miR-455-3p.
    RESULTS: XIST was downregulated in OSCC tissues and cell lines. Overexpression of XIST inhibited the proliferation, migration, and invasion ability of OSCC cells. Bioinformatics analysis and luciferase reporter assay confirmed XIST could bind to miR-455-3p. Besides, miR-455-3p directly targeted BTG2 in OSCC cells. Rescue experiments further confirmed the positive interaction between miR-455-3p and XIST as well as between miR-455-3p and BTG2.
    CONCLUSION: XIST was down-regulated in OSCC. XIST regulated the expression of BTG2 via sponging miR-455-3p. XIST/miR-455-3p/BTG2 signal axis inhibited the malignant progression of OSCC.
    Digital Access Access Options
  • Article
    Zhou F, Zanganeh S, Mohammad I, Dietz C, Abuteen A, Smith MB, Zhu Q.
    Org Biomol Chem. 2015 Dec 14;13(46):11220-7.
    Tumor hypoxia is associated with the rapid proliferation and growth of malignant tumors, and the ability to detect tumor hypoxia is important for predicting tumor response to anti-cancer treatments. We have developed a class of dye-conjugates that are related to indocyanine green (ICG, ) to target tumor hypoxia, based on in vivo infrared fluorescence imaging using nitroimidazole moieties linked to indocyanine fluorescent dyes. We previously reported that linking 2-nitroimidazole to an indocyanine dicarboxylic acid dye derivative () using an ethanolamine linker (ethanolamine-2-nitroimidazole-ICG, ), led to a dye-conjugate that gave promising results for targeting cancer hypoxia in vivo. Structural modification of the dye conjugate replaced the ethanolamine unit with a piperazineacetyl unit and led a second generation dye conjugate, piperzine-2-nitroimidazole-ICG (). This second generation dye-conjugate showed improved targeting of tumor hypoxia when compared with . Based on the hypothesis that molecules with more planar and rigid structures have a higher fluorescence yield, as they could release less absorbed energy through molecular vibration or collision, we have developed a new 2-nitroimidazole ICG conjugate, , with two carbon atoms less in the polyene linker. Dye-conjugate was prepared from our new dye (), and coupled to 2-nitroimidazole using a piperazine linker to produce this third-generation dye-conjugate. Spectral measurements showed that the absorption/emission wavelengths of 657/670 were shifted ∼100 nm from the second-generation hypoxia dye of 755/780 nm. Its fluorescence quantum yield was measured to be 0.467, which is about 5 times higher than that of (0.083). In vivo experiments were conducted with balb/c mice and showed more than twice the average in vivo fluorescence intensity in the tumor beyond two hours post retro-orbital injection as compared with . These initial results suggest that may significantly improve in vivo tumor hypoxia targeting.
    Digital Access Access Options
  • Article
    Mirzamohammad A, Eftekhari Yazdi M, Lavasani AM.
    Sci Rep. 2023 Jul 11;13(1):11220.
    Recently, several researches have been done to improve the perfomance of solar chimney power plants (SCPP) and increase their low output power during hours when the solar radiation is limited. In this study, by combining a SCPP and a gas power plant, the output power is increased and the power output of the combined power plant can be gained at all hours of the day and night. Pipes are buried under the ground and the outlet hot gas from gas power plant flows through the buried pipes instead of being released into the atmosphere through the stacks. Flowing of hot gas through the buried pipes at the soil under the canopy increases the temperature of soil which is exposed to the solar radiation. Increasing of the soil temperature leads to the growth in the value of air temperature under the canopy. The air density reduces as the air temperature increases which leads to the increase of air velocity and output power. By applying the buried pipes, the output power is not zero during the hours when there is no radiation flux. The results for air temperature, heat loss and output power are studied in detail and it is shown that the use of buried pipes in which hot gas flows leads to the increase of the output power of SCPP by 554%, 208% and 125% at the radiation flux of 200 W/m2, 500 W/m2 and 800 W/m2, respectively.
    Digital Access Access Options