Today's Hours: 12:00pm - 6:00pm

Search

Filter Applied Clear All

Did You Mean:

Search Results

  • Article
    Tuck B, Watkin E, Forsyth M, Somers A, Ghorbani M, Machuca LL.
    Sci Rep. 2021 08 03;11(1):15697.
    Chemical biocides remain the most effective mitigation strategy against microbiologically influenced corrosion (MIC), one of the costliest and most pervasive forms of corrosion in industry. However, toxicity and environmental concerns associated with these compounds are encouraging the development of more environmentally friendly MIC inhibitors. In this study, we evaluated the antimicrobial effect of a novel, multi-functional organic corrosion inhibitor (OCI) compound, cetrimonium trans-4-hydroxy-cinnamate (CTA-4OHcinn). Attachment of three bacterial strains, Shewanella chilikensis, Pseudomonas balearica and Klebsiella pneumoniae was evaluated on wet-ground (120 grit finish) and pre-oxidised carbon steel surfaces (AISI 1030), in the presence and absence of the new OCI compound. Our study revealed that all strains preferentially attached to pre-oxidised surfaces as indicated by confocal laser scanning microscopy, scanning electron microscopy and standard colony forming unit (CFU) quantification assays. The inhibitor compound at 10 mM demonstrated 100% reduction in S. chilikensis attachment independent of initial surface condition, while the other two strains were reduced by at least 99.7% of the original viable cell number. Our results demonstrate that CTA-4OHcinn is biocidal active and has promise as a multifunctional, environmentally sound MIC inhibitor for industrial applications.
    Digital Access Access Options