Today's Hours: 10:00am - 6:00pm

Search

Filter Applied Clear All

Did You Mean:

Search Results

  • Article
    Zhang G, Qiao Y, Xu T, Zhang C, Zhang Y, Shi L, Shuang S, Dong C.
    Nanoscale. 2015 Aug 07;7(29):12666-72.
    We report a novel and environmentally friendly fluorescent probe for detecting the cyanide ion (CN(-)) using L-amino acid oxidase (LAAOx)-protected Au nanoclusters (LAAOx@AuNCs) with red emission. The fluorescence-based sensing behaviour of LAAOx@AuNCs towards anions was investigated in buffered aqueous media. Among the anions studied, CN(-) was found to effectively quench the fluorescence emission of AuNCs based on CN(-) induced Au core decomposition. Excellent sensitivity and selectivity toward the detection of CN(-) in aqueous solution were observed. The CN(-) detection limit was determined to be approximately 180 nM, which is 15 times lower than the maximum level (2700 nM) of CN(-) in drinking water permitted by the World Health Organization (WHO). A linear relationship between the fluorescence intensity and CN(-) concentration was observed in two ranges of CN(-) concentration, including 3.2 × 10(-6) to 3.4 × 10(-5) mol L(-1) and 3.81 × 10(-5) to 1.04 × 10(-4) mol L(-1). The high sensitivity and selectivity to CN(-) among the 17 types of anions make the AuNCs good candidates for use in fluorescent nanoprobes of CN(-).
    Digital Access Access Options