Search
Filter Results
- Resource Type
- Article6
- Book1
- Book Digital1
- Article Type
- Research Support, Non-U.S. Gov't1
- Result From
- PubMed6
- Lane Catalog1
-
Year
- Journal Title
- Bioresour Technol1
- Chemosphere1
- Food Chem1
- Int J Biol Macromol1
Search Results
Sort by
- ArticleDai ZL, Yang WL, Fan ZX, Guo L, Liu ZH, Dai YJ.Chemosphere. 2021 May;270:128670.Neonicotinoid insecticides are neurotoxicants that cause serious environmental pollution and ecosystem risks. In the present study, a nitenpyram-degrading bacterium, Rhodococcus ruber CGMCC 17550, was isolated from a nitenpyram production sewage treatment tank. Liquid chromatography-mass spectrometry analysis revealed R. ruber degraded nitenpyram via a novel hydroxylation pathway to form three different metabolites, one of which was confirmed to hydroxylate nitenpyram at the C3 site of the 6-chlorpyridine cycle by nuclear magnetic resonance analysis. The nitenpyram degradation rate increased as the biomass of resting R. ruber CGMCC 17550 cells increased, reaching 98.37% at an OD600 of 9 in transformation broth containing 100 mg L-1 nitenpyram after 72 h of incubation. Nitenpyram degradation by R. ruber CGMCC 17550 was insensitive to dissolved oxygen levels. Use of glucose, fructose and pyruvate as co-substrates slightly increased nitenpyram degradation. The cytochrome P450 inhibitor 1-aminobenzotriazole strongly inhibited nitenpyram degradation, indicating that P450 enzymes may mediate nitenpyram hydroxylation. Inoculation of R. ruber CGMCC 17550 enhanced nitenpyram degradation in surface water. Additionally, R. ruber cells immobilized by calcium-alginate remediated 87.11% of 100 mg L-1 NIT in 8 d. Genome sequencing analysis confirmed that R. ruber CGMCC 17550 has metabolic diversity and abundant KEGG genes involved in xenobiotics biodegradation and metabolism. These findings demonstrate that R. ruber CGMCC 17550 is capable of unique biodegradation of nitenpyram via the hydroxylation pathway and is a promising bacterium for bioremediation of contaminants.
- ArticleAzevedo MA, Cerqueira MA, Fuciños P, Silva BFB, Teixeira JA, Pastrana L.Food Chem. 2021 May 15;344:128670.In this work rhamnolipids were evaluated as surfactants for the production of nanostructured lipid carriers (NLCs). NLCs were produced by melt-emulsification using ultra-homogenisation followed by ultrasonication and different ratios of medium-chain-triglycerides and glycerol monostearate (lipid phase) were tested. NLCs presented sizes and polydispersity index values ranged between 97 and 120 nm and 0.20-0.26, respectively. Transmission electron microscopy observations confirmed the size and the spherical morphology of the NLCs. The thermal analysis and X-ray diffraction showed that the amount of solid lipid (glycerol monostearate) influences the melting, crystallisation and enthalpy of NLCs and their degree of crystallinity. Results showed that NLCs were more stable at 4 °C and the best formulation (1% of water phase, 0.05% of biosurfactant and solid:liquid ratio of 10:90) was stable for 30 days. This work showed the possibility of using rhamnolipids to produce NLCs and represent an important step for the development of lipid-based nanosystems using biosurfactants.
- ArticleFeng S, Ngo HH, Guo W, Khan MA, Zhang S, Luo G, Liu Y, An D, Zhang X.Bioresour Technol. 2023 Mar;372:128670.Biohydrogen is a promising clean fuel but with a low yield. This study aims to enhance biohydrogen production from synthetic swine wastewater by employing crude enzymes obtained from different fruit peels (orange, mandarin, and banana) to improve the biohydrogen-formation processes of dark fermentation. Results indicated that dosing with crude enzymes affected volatile fatty acids (VFAs) and biogas composition insignificantly, while increased biohydrogen yield from 1.62 ± 0.00 (blank) to 1.90 ± 0.08 (orange peel), 2.01 ± 0.00 (mandarin peel), and 1.96 ± 0.01 (banana peel) mol H2/mol glucose, respectively. Banana peel crude enzyme was the most effective additive, with 1 g/L protein improving 97.41 ± 3.72 % of biohydrogen yield. The crude enzymes wielded less influence on acetic acid and butyric acid pathways but enhanced other biohydrogen production pathways. These observations demonstrated that fruit peel-based crude enzymes as additives are advantageous to improving biohydrogen yield towards higher biohydrogen production.
- ArticleWang Y, Xu W, Chen X, Li C, Xie J, Yang Y, Zhu T, Zhang C.J Hazard Mater. 2022 Jun 15;432:128670.Gaseous ammonia (NH3) in the atmosphere is potentially harmful to both human health and the environment. The selective catalytic oxidation of NH3 (termed as NH3-SCO) into N2 and H2O is a promising method for decreasing NH3 emissions. A highly efficient catalyst is required for controlling NH3 emissions by this method in practice. In this study, we prepared Ir/TiO2 catalysts using different crystal structures of TiO2 (rutile, P25 or anatase) as supports by a simple impregnation method and evaluated their performance in the NH3-SCO. We found that the Ir/TiO2-R (rutile) catalyst performed better than the Ir/TiO2-P25 (mixed-phase) and Ir/TiO2-A (anatase) catalyst. High-angle annular dark-field images of the aberration-corrected scanning transmission electron microscopy revealed that the Ir species were mainly atomically dispersed on the TiO2 support in Ir/TiO2-R with 1 wt% Ir loading, whereas the Ir species agglomerated to form clusters or nanoparticles in Ir/TiO2-P25 and Ir/TiO2-A. The combined results of X-ray absorption fine structure, H2-temperature-programmed reduction, and in situ diffuse reflectance for infrared Fourier Transform spectroscopy studies suggested that atomically dispersed Ir species had stronger electronic metal-support interaction with rutile TiO2, which resulted in easier to adsorb and activate O2 at the interface and thus, better low-temperature activity of the Ir/TiO2-R catalyst.
- ArticleDoran C, Chetrit J, Holley MC, Grundy D, Nassar MA.PLoS One. 2015;10(6):e0128670.In vitro cell lines from DRG neurons aid drug discovery because they can be used for early stage, high-throughput screens for drugs targeting pain pathways, with minimal dependence on animals. We have established a conditionally immortal DRG cell line from the Immortomouse. Using immunocytochemistry, RT-PCR and calcium microfluorimetry, we demonstrate that the cell line MED17.11 expresses markers of cells committed to the sensory neuron lineage. Within a few hours under differentiating conditions, MED17.11 cells extend processes and following seven days of differentiation, express markers of more mature DRG neurons, such as NaV1.7 and Piezo2. However, at least at this time-point, the nociceptive marker NaV1.8 is not expressed, but the cells respond to compounds known to excite nociceptors, including the TRPV1 agonist capsaicin, the purinergic receptor agonist ATP and the voltage gated sodium channel agonist, veratridine. Robust calcium transients are observed in the presence of the inflammatory mediators bradykinin, histamine and norepinephrine. MED17.11 cells have the potential to replace or reduce the use of primary DRG culture in sensory, pain and developmental research by providing a simple model to study acute nociception, neurite outgrowth and the developmental specification of DRG neurons.
- ArticleWang Y, Qiu F, Zheng Q, Hong A, Wang T, Zhang J, Lin L, Ren Z, Qin T.Int J Biol Macromol. 2024 Feb;257(Pt 2):128670.In this study, a novel nano-drug delivery system (CS-Au NPs) based on gold nanoparticles (Au NPs) and chitosan (CS) that modified Myricaria germanica polysaccharide (MGP) was developed to enhance immune responses. At a MGP to CS Au ratio of 5:1, CS-Au-MGP NPs had a loading capacity of 78.27 %. The structure of CS-Au-MGP NPs were characterized by Transmission electron microscope, TEM-energy dispersive spectroscopy mapping, Fourier transform infrared spectroscopy, X-ray photoelectron spectrometer, particle size and zeta-potential distribution analysis. Under weakly acidic conditions, in vitro CS-Au-MGP NPs release was most effective. In vivo showed that co-immunization with CS-Au-MGP NPs and PCV2 significantly increased the organ index of the thymus, spleen, and liver in mice. Additionally, CS-Au-MGP NPs significantly increased the levels of IgG, IgG1, and IgG2a antibodies, as well as IFN-γ and IL-6 levels. Furthermore, the CS-Au-MGP NPs promoted proliferation of spleen T and B lymphocytes, increased the number of CD3+, CD4+, and CD8+ cells, and increased the CD4+/CD8+ T cell ratio. Meanwhile, CS-Au-MGP NPs remarkably TLR2/IRAK4 pathway activation and mRNA levels of cytokines (IFN-γ and IL-6). These results indicated that CS-Au-MGP NPs could enhance the immune activity, and it could be potentially used as an MGP delivery system for the induction of strong immune responses.
- BookShane A. Marshall, John Ruedy.Summary: Ideal for any on-call professional, resident, or medical student, this highly templated, best-selling reference covers the common problems you'll encounter while on call in the hospital. On Call Principles and Protocols, 7th Edition, by Drs. Shane A. Marshall and John Ruedy, provides key information in time-sensitive, challenging situations. You'll gain speed, skill, and knowledge with every call - from diagnosing a difficult or life-threatening situation to prescribing the right medication.
Contents:
Introduction
Patient-related problems: The common calls
Laboratory-related problems: The common calls.Digital Access ClinicalKey [2023]