Today's Hours: 8:00am - 10:00pm

Search

Did You Mean:

Search Results

  • Article
    Bailey KM, Sami S, Smith FW.
    Neuropsychologia. 2024 07 04;199:108900.
    Whilst previous research has linked attenuation of the mu rhythm to the observation of specific visual categories, and even to a potential role in action observation via a putative mirror neuron system, much of this work has not considered what specific type of information might be coded in this oscillatory response when triggered via vision. Here, we sought to determine whether the mu rhythm contains content-specific information about the identity of familiar (and also unfamiliar) graspable objects. In the present study, right-handed participants (N = 27) viewed images of both familiar (apple, wine glass) and unfamiliar (cubie, smoothie) graspable objects, whilst performing an orthogonal task at fixation. Multivariate pattern analysis (MVPA) revealed significant decoding of familiar, but not unfamiliar, visual object categories in the mu rhythm response. Thus, simply viewing familiar graspable objects may automatically trigger activation of associated tactile and/or motor properties in sensorimotor areas, reflected in the mu rhythm. In addition, we report significant attenuation in the central beta band for both familiar and unfamiliar visual objects, but not in the mu rhythm. Our findings highlight how analysing two different aspects of the oscillatory response - either attenuation or the representation of information content - provide complementary views on the role of the mu rhythm in response to viewing graspable object categories.
    Digital Access Direct to PDF
  • Article
    Tichacek O, Mistrík P, Jungwirth P.
    Hear Res. 2023 12;440:108900.
    Computer models of the individual components of the peripheral auditory system - the outer, middle, and inner ears and the auditory nerve - have been developed in the past, with varying level of detail, breadth, and faithfulness of the underlying parameters. Building on previous work, we advance the modeling of the ear by presenting a complete, physiologically justified, bottom-up computer model based on up-to-date experimental data that integrates all of these parts together seamlessly. The detailed bottom-up design of the present model allows for the investigation of partial hearing mechanisms and their defects, including genetic, molecular, and microscopic factors. Also, thanks to the completeness of the model, one can study microscopic effects in the context of their implications on hearing as a whole, enabling the correlation with neural recordings and non-invasive psychoacoustic methods. Such a model is instrumental for advancing quantitative understanding of the mechanism of hearing, for investigating various forms of hearing impairment, as well as for devising next generation hearing aids and cochlear implants.
    Digital Access Direct to PDF
  • Article
    Gao Z, Liu J, Zhang Y, Xu R, Yang Y, Wu L, Lei J, Ming T, Ren F, Liu L, Chen Q.
    Bioelectrochemistry. 2025 Jun;163:108900.
    In this work, the electrochemical biosensor based on the subtle combination of terminal deoxynucleotidyl transferase (TdT), CRISPR/Cas14a, and magnetic nanoparticles (MNPs) was developed for the detection of nasopharyngeal carcinoma (NPC)-derived exosomes. Due to the synergistic effect of the following factors: the powerful elongation capacity of TdT for single-stranded DNA (ssDNA) with 3-hydroxy terminus, the outstanding trans-cleavage ability of CRISPR/Cas14a specifcally activated by the crRNA binding to target DNA, and the excellent separation ability of MNPs, the developed electrochemical biosensor exhibited high sensitivity for the detection of NPC-derived exosome, with a linear range from 6.0 × 102 ∼ 1.0 × 105 particles/mL and a limit of detection as lown as 80 particles/mL. In addition, this electrochemical biosensor successfully distinguished exosomes from NPC patients and healthy individuals. This electrochemical biosensor opens up a new pathway for the early diagnosis of NPC. Abbreviations: NPC, Nasopharyngeal carcinoma; CRISPR/Cas, Clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins system; PAMs, Protospacer adjacent motifs; RCA, Rolling circle amplification; CHA, Catalytic hairpin assembly; LAMP, Loop-mediated isothermal amplification; TdT, Terminal deoxynucleotidyl transferase; SgRNA, Single guide RNA.
    Digital Access Direct to PDF
  • Article
    Sung B.
    Math Biosci. 2022 10;352:108900.
    The organ-on-a-chip (OoC) is an artificially reconstructed microphysiological system that is implemented using tissue mimics integrated into miniaturized perfusion devices. OoCs emulate dynamic and physiologically relevant features of the body, which are not available in standard in vitro methods. Furthermore, OoCs provide highly sophisticated multi-organ connectivity and biomechanical cues based on microfluidic platforms. Consequently, they are often considered ideal in vitro systems for mimicking self-regulating biophysical and biochemical networks in vivo where multiple tissues and organs crosstalk through the blood flow, similar to the human endocrine system. Therefore, OoCs have been extensively applied to simulate complex hormone dynamics and endocrine signaling pathways in a mechanistic and fully controlled manner. Mathematical and computational modeling approaches are critical for quantitatively analyzing an OoC and predicting its complex responses. In this review article, recently developed in silico modeling concepts of endocrine OoC systems are summarized, including the mathematical models of tissue-level transport phenomena, microscale fluid dynamics, distant hormone signaling, and heterogeneous cell-cell communication. From this background, whole chip-level analytic approaches in pharmacokinetics and pharmacodynamics will be described with a focus on the spatial and temporal behaviors of absorption, distribution, metabolism, and excretion in endocrine biochips. Finally, quantitative design frameworks for endocrine OoCs are reviewed with respect to support parameter calibration/scaling and enable predictive in vitro-in vivo extrapolations. In particular, we highlight the analytical and numerical modeling strategies of the nonlinear phenomena in endocrine systems on-chip, which are of particular importance in drug screening and environmental health applications.
    Digital Access Access Options
  • Article
    Wang G, Gao X, Cai Y, Li G, Ma R, Yuan J.
    Environ Int. 2024 Aug;190:108900.
    The elevated levels of antibiotic resistance genes (ARGs) in livestock manure represent a significant threat to both the environment and human health. Composting has been recognized as an effective strategy to mitigate the abundance of ARGs in manure. However, notable rebounds in ARGs abundance have been observed during this process. This study explored the changes in ARGs abundance and the underlying influencing factors during the composting of carnivore (chicken and pig) and herbivore (sheep and cow) manures, along with mushroom residues. The findings revealed that the total relative abundance of ARGs increased by 6.96 and 10.94 folds in chicken and pig manure composts, respectively, whereas it decreased by a remarkable 91.72% and 98.37% in sheep and cow manure composts. Nitrogen content emerged as the primary physicochemical factors governing the abundance of ARGs in chicken and pig manure composts. Conversely, carbon content played a pivotal role in determining ARGs abundance in chicken and pig manure composts. Furthermore, the presence of dominant hosts, such as Corynebacterium, Bacillus, and Clostridium, along with emerging bacteria like Thermobifida, Saccharomonospora, and Actinomadura, contributed significantly to the enrichment of total ARGs, including tetG, tetO, tetX, and sul2, in chicken and pig manure composts. The coexistence of these genes with mobile genetic elements and a plethora of host bacteria, coupled with their high abundance, renders them particularly high-risk ARGs. On the other hand, the observed decrease in the abundance of total ARGs in sheep and cow manure composts can be attributed to the decline in the population of host bacteria, specifically Atopostipes, Psychrobacter, and Corynebacterium. Collectively, these results provide crucial insights into the management of ARGs risks and offer essential theoretical support for enhancing the safe utilization of organic fertilizer in agriculture.
    Digital Access Access Options
  • Article
    Khan HR, Khalid MHB, Alam U, Atiq M, Qidwai U, Qazi SA.
    Data Brief. 2023 Feb;46:108900.
    Many electrical appliances have progressed from sheer prototypes to viable products by being automated with the help of sensors and Internet of Things (IoT). In this data driven century, there aren't many data-centric solutions for the effective use of residential and commercial ceiling fans. For the said reason, sensors were installed on a remote-controlled BLDC ceiling fan, and a large amount of user data with environmental indicators such as temperature and humidity, was collected. This data along with the fan speed was logged to a cloud server over Wi-Fi using a Wi-Fi enabled microcontroller. The raw data consists of timestamp, temperature, humidity, and fan speed. The data is logged depending on the change of any parameter rather than a specific interval. The logged data is then visualized on the cloud server to monitor the usage patterns of the appliance and its subsequent energy consumption. The dataset is comprised of the fan data from the bedroom, living room, and lounge obtained by the resident's consent. This data is useful for data scientists, environmentalists, fan manufacturers, architects, social scientists, and several other field enthusiasts. The data can be analyzed based on monthly average temperature and humidity energy consumed, operational time per day or month and monthly/weekly summary of usage. Furthermore, by applying Artificial Intelligence (AI) algorithms on such data, it is feasible to extract patterns that indicate the appliance usage and identify changes in the daily routine. Many machine learning techniques can be applied on the dataset to introduce intelligent control of the appliance for adaptable operation without compromising on the comfort level of the user.
    Digital Access Access Options
  • Article
    Parodi C, Viganò I, Ottaviano E, Massa V, Borghi E, Beretta S, Di Francesco JC, Badioni V, Vignoli A, COV-EPI Study Group.
    Epilepsy Behav. 2022 10;135:108900.
    PURPOSE: The worldwide pandemic caused by SARS-CoV-2 virus posed many challenges to the scientific and medical communities, including the protection and management of fragile populations. People with epilepsy (PWE) are a heterogenous group of subjects, with different treatment regimens and severity of symptoms. During the National lockdown, in Italy many patients with chronic conditions lost their regular follow-up program. The aim of this study was to investigate the impact of COVID-19 on their health status, from the start of the pandemic (March 2020) to July 2021 and one year later.
    METHODS: We proposed an online questionnaire to subjects followed up at different epilepsy centers located in Milano, Monza & Lodi, three of Lombardy, Northern Italy, the most affected areas by the pandemic. Survey evaluated age, sex, characteristics of patients, type of epilepsy and therapies, COVID-19 diagnosis, vaccines, sleep quality, and anxiety status.
    RESULTS: Among 178 analyzed surveys, 37 individuals reported symptoms of COVID-19 in closed contacts, including 9 with molecular diagnosis and 16 PWE performing the nasopharyngeal swab with 3 positive cases. One year later, 35 individuals reported at least one symptom overlapping with those typical of COVID-19, 8 received COVID-19 diagnosis, among which 6 were positive for SARS-CoV-2 infection. According to the sleep quality scale assessment, most PWE (52.3%) had poor sleep quality. Assessing anxiety status, 32 (38.1%) had a pathological score.
    CONCLUSION: In this multicenter study, we observed that PWE do not appear to be at a higher risk of severe COVID-19. It will be fundamental monitoring this group to assess possible differences in long-COVID-19 and/or neuro-COVID-19 prevalence. On the other hand, our survey confirmed the impact of the pandemic on anxiety and quality of sleep in PWE. Thus, it is important to promptly recognize and treat psychological distress in PWE, because it could be a risk factor in seizure aggravation and quality-of-life deterioration. Telemedicine appears to be a useful tool to support patients with chronic diseases, such as epilepsy.
    Digital Access Access Options
  • Article
    Liu YF, Zhang ZC, Wang SY, Fu SQ, Cheng XF, Chen R, Sun T.
    Int Immunopharmacol. 2022 Sep;110:108900.
    The prognosis for advanced clear cell renal cell carcinoma (ccRCC) is not satisfactory, even though its treatment has evolved rapidly over the past 20 years. Systemic ccRCC treatment options mainly involve antiangiogenic therapy, immune checkpoint blockade, or a combination of these therapies, and as more clinical evidence becomes available, immune checkpoint inhibitors (ICIs) are increasingly dominant. Conventional ICIs lead to the restoration of T-cell activation and a reduction in T-cell depletion by specifically blocking programmed cell death 1 (PD-1), programmed cell death 1 ligand 1 (PD-L1) or cytotoxic T lymphocyte antigen 4 (CTLA-4), ultimately enhancing the antitumor immune response. There is no doubt that these therapies have achieved some clinical efficacy in the overall ccRCC population, but response rates and durability remain a great challenge. Therefore, novel immune checkpoints or new combination therapeutic strategies based on ICIs continue to be sought and developed. This review will provide a comprehensive overview of ICI-based therapeutic strategies in advanced ccRCC, including their mechanisms of action and the latest clinical evidence.
    Digital Access Access Options
  • Article
    Hong S, Cha KH, Park JH, Jung DS, Choi JH, Yoo G, Nho CW.
    J Nutr Biochem. 2022 03;101:108900.
    Osteoporosis, a disease characterized by low bone density that poses a high risk of bone fractures, is associated with aging, diet, and menopause. Despite the various known therapeutic methods for osteoporosis treatment, the development of a new therapeutic agent without side effects in long-term use is required. Cinnamic acid (CA) is a phytochemical found in cinnamon. In this study, we evaluated the effect of CA on osteoporosis and demonstrated its mechanism in MC3T3E1 preosteoblasts and ovariectomized mice. CA treatment induced osteoblast differentiation with elevation of osteogenic markers both in vitro and in vivo. CA treatment ameliorated bone loss resulting in better bone indices, increased gut microbial diversity, and recovered changes in the gut microbial composition induced by ovariectomy. These changes were accompanied by an increase in BMP/TGFβ/Smad signaling. Therefore, CA has the potential to suppress the progress of bone loss via the enhancement of bone density through the regulation of gut microbiota.
    Digital Access Access Options
  • Article
    Michels N, De Henauw S, Klosowska J, Wijnant K, Braet C, Giletta M.
    Biol Psychol. 2024 Nov;193:108900.
    This study assessed interpersonal stressors (peer adversity and parental rejection) as predictors of adolescents' circulating inflammatory markers, while examining emotion regulation and parasympathetic nervous system activity (at rest, reactivity, and recovery) as potential protective moderators. Data were collected in a Belgian cohort of adolescents in 2017 (n=185, 51.4 % boys, 10-18 y) and 2018 (n=98), and included serum inflammatory markers (CRP, TNFα, IFNγ, IL-6, IL-8 and IL-10), peer adversity, parental rejection, emotion regulation and heart rate variability (RMSSD-HRV, at rest and in 2018 also in response to a Trier Social Stress Test). Contrary to the hypothesis, interpersonal stressors were negatively related to TNFα (in 2017 and 2018), IFNγ (in 2017 and longitudinally) and IL-6 (in 2018). In 23 % of the tested associations, HRV at rest was a significant moderator: the negative stressor-inflammation associations were present only among adolescents with low HRV resting values. No significant moderation by HRV reactivity or recovery was detected. After correction for multiple testing, all above-mentioned significant findings disappeared. These unexpected findings may suggest that the positive association between stress exposure and circulating markers of inflammation is not yet detectable in adolescence and perhaps becomes evident only later in life.
    Digital Access Access Options
  • Article
    Iannone M, Alberti F, Braganò MC, de la Torre X, Molaioni F, Botrè F.
    Steroids. 2021 Oct;174:108900.
    In this work we have investigated the influence of the intake of two synthetic isoflavones, methoxyisoflavone and ipriflavone, on the urinary concentration of endogenous steroids, and on their relative ratios, of doping relevance. Specifically, the concentrations of testosterone (T), epitestosterone (E), androsterone (A), etiocholanolone (Etio), 5α-androstan-3α,17α-diol (5αAdiol), 5β-androstan-3α,17α-diol (5βAdiol), and the ratios T/E, A/T, A/Etio, 5αAdiol/5βAdiol, 5αAdiol/E, were considered, in the framework of the Steroidal Module of the Athlete Biological Passport (ABP). The above set of parameters were complemented by the urinary levels of luteinizing hormone (total LH) and the ratio between T and LH (T/total LH), to assess the possible effects on the biosynthesis of the mentioned steroids. Five healthy Caucasian male volunteers were selected for the study. Urine samples were collected before and during the administration of (i) methoxyisoflavone (Methoxyisoflavone, MyProtein) and (ii) ipriflavone (Osteofix ®, Chiesi Farmaceutici). For the analysis of the urinary steroid profile, after enzymatic hydrolysis with β-glucuronidase from Escherichia Coli (E. Coli) and liquid-liquid extraction with tert-buthylmethyl ether, all samples were analyzed by gas chromatography coupled to tandem mass spectrometry (GC-MS/MS), while for the determination of total LH all urine samples were directly analyzed by a chemiluminescent immunometric assay technique (Siemens Immulite 2000 LH). Our results show that the administration of either methoxyisoflavone or ipriflavone causes an alteration of the urinary concentrations and concentration ratios of the investigated steroids, in the range 55-80% from the baseline values. Furthermore, an oversecretion of LH after the daily intake of methoxyisoflavone or ipriflavone was also recorded in all volunteers, corresponding to an increase in the biosynthesis and excretion of T and some of its metabolites. These changes trigger a disregulation in the pattern of urinary excretion of the steroids included in the Steroidal Module of the ABP, which makes more difficult the interpretation of the longitudinal steroid profile based on the definition of individual normality ranges for each athlete. Our data are also consistent with previous evidence regarding the in vitro effects of natural and synthetic isoflavones, suggesting that their monitoring in doping control routine analysis would be very beneficial for the result management activities.
    Digital Access Access Options
  • Article
    Janesick A, Scheibinger M, Benkafadar N, Kirti S, Ellwanger DC, Heller S.
    Cell Rep. 2021 03 23;34(12):108900.
    In contrast to mammals, birds recover naturally from acquired hearing loss, which makes them an ideal model for inner ear regeneration research. Here, we present a validated single-cell RNA sequencing resource of the avian cochlea. We describe specific markers for three distinct types of sensory hair cells, including a previously unknown subgroup, which we call superior tall hair cells. We identify markers for the supporting cells associated with tall hair cells, which represent the facultative stem cells of the avian inner ear. Likewise, we present markers for supporting cells that are located below the short cochlear hair cells. We further infer spatial expression gradients of hair cell genes along the tonotopic axis of the cochlea. This resource advances neurobiology, comparative biology, and regenerative medicine by providing a basis for comparative studies with non-regenerating mammalian cochleae and for longitudinal studies of the regenerating avian cochlea.
    Digital Access Access Options
  • Article
    Kanth S, Malgar Puttaiahgowda Y, Kulal A.
    Carbohydr Res. 2023 Oct;532:108900.
    Due to the rise of nosocomial infections and the increasing threat of antibiotic resistance, new techniques are required to combat bacteria and fungi. Functional antimicrobial biodegradable materials developed from low-cost renewable resources like polysaccharides would enable greater applications in this regard. Our group has developed and characterized a new antimicrobial polymer using commercially available N-ethyl piperazine and starch via simple one-pot method. The prepared antimicrobial polymer was characterized by FTIR and NMR. In addition, the thermal properties of the synthesized antimicrobial polymer were examined through TGA and DSC. The antimicrobial potential of the prepared material was investigated using the bacteria, Staphylococcus aureus, Escherichia coli, and Mycobacterium smegmatis and a fungi Candida albicans. The result indicates that, as the amount of polymer increases, the antimicrobial activity also increases. SA-E-NPz exhibited a zone of inhibition in the range of 8-13 mm, and the MIC was found to be < 0.625 mg against all four microbes. The antimicrobial activity of polymer coated on fabric was also studied. Furthermore, the cytotoxicity studied against human fibroblast cell lines showed that the prepared polymer is non-toxic to the cells. The study concluded that the synthesized polymer shows good antimicrobial activity, is non-toxic to human fibroblast cells, and thus can be used for wound dressing or textile applications.
    Digital Access Access Options
  • Article
    Zhang Y, Zheng M, Zhu R, Ma R.
    Meat Sci. 2022 Oct;192:108900.
    This paper presented a method to detect adulterated mutton using recurrence plot transformed by spectrum combined with convolutional neural network (RP-CNN). For this, 100 adulterated samples of mutton mixed with different proportions (0.5-1-2-5-10% (w/w)) of pork and 20 pure mutton samples were prepared. The results of the classification model of adulterated mutton and the quantitative prediction model of pork content established by this method were comparable for fresh, frozen-thawed and mixed datasets. It shows that the classification accuracies of adulteration mutton on three datasets were 100.00%, 100.00% and 99.95% respectively. Moreover, for the pork content prediction of adulterated mutton, the R2 on three datasets of fresh, frozen-thawed and mixed samples were 0.9762, 0.9807 and 0.9479, respectively. Therefore, the hyperspectral combined with RP-CNN proposed in this paper shows great potential in the classification of adulterated mutton and the pork content prediction of adulterated mutton.
    Digital Access Access Options
  • Article
    Tassoulas LJ, Wackett LP.
    iScience. 2024 Feb 16;27(2):108900.
    Metformin is the first-line treatment for type 2 diabetes, yet its mechanism of action is not fully understood. Recent studies suggest metformin's interactions with gut microbiota are responsible for exerting therapeutic effects. In this study, we report that metformin targets the gut microbial enzyme agmatinase, as a competitive inhibitor, which may impair gut agmatine catabolism. The metformin inhibition constant (Ki) of E. coli agmatinase is 1 mM and relevant in the gut where the drug concentration is 1-10 mM. Metformin analogs phenformin, buformin, and galegine are even more potent inhibitors of E. coli agmatinase (Ki = 0.6, 0.1, and 0.007 mM, respectively) suggesting a shared mechanism. Agmatine is a known effector of human host metabolism and has been reported to augment metformin's therapeutic effects for type 2 diabetes. This gut-derived inhibition mechanism gives new insights on metformin's action in the gut and may lead to significant discoveries in improving metformin therapy.
    Digital Access Access Options
  • Article
    Shoeb M, Mustafa GM, Kodali VK, Smith K, Roach KA, Boyce G, Meighan T, Roberts JR, Erdely A, Antonini JM.
    Environ Res. 2020 01;180:108900.
    Inhalation of welding fume (WF) can result in the deposition of toxic metals, such as manganese (Mn), in the brain and may cause neurological changes in exposed workers. Alterations in telomere length are indicative of cellular aging and, possibly, neurodegeneration. Here, we investigated the effect of WF inhalation on telomere length and markers of neurodegeneration in whole brain tissue in rats. Male Fischer-344 (F-344) rats were exposed by inhalation to stainless steel WF (20 mg/m3 x 3 h/d x 4 d/wk x 5 wk) or filtered air (control). Telomere length, DNA-methylation, gene expression of Trf1, Trf2, ATM, and APP, protein expression of p-Tau, α-synuclein, and presenilin 1 and 2 were assessed in whole brain tissue at 12 wk after WF exposure ended. Results suggest that WF inhalation increased telomere length without affecting telomerase in whole brain. Moreover, we observed that components of the shelterin complex, Trf1 and Trf2, play an important role in telomere end protection, and their regulation may be responsible for the increase in telomere length. In addition, expression of different neurodegeneration markers, such as p-Tau, presenilin 1-2 and α-synuclein proteins, were increased in brain tissue from the WF-exposed rats as compared to control. These findings suggest a possible correlation between epigenetic modifications, telomere length alteration, and neurodegeneration because of the presence of factors in serum after WF exposure that may cause extra-pulmonary effects as well as the translocation of potentially neurotoxic metals associated with WF to the central nervous system (CNS). Further studies are needed to investigate the brain region specificity and temporal response of these effects.
    Digital Access Access Options
  • Article
    Li S, Shi S, Luo B, Xia F, Ha Y, Merkley KH, Motamedi M, Zhang W, Liu H.
    Exp Eye Res. 2022 02;215:108900.
    The cornea is transparent and innervated by a dense collection of sensory nerves originating from the ocular branch of the trigeminal nerve. This study was designed to comprehensively analyze alterations of corneal sub-basal nerve plexus in a mouse model of tauopathy (P301L transgenic mice) to test the possibility of using corneal nerves as a biomarker for tauopathy. Corneal sensitivity, thickness and epithelial wound healing were measured non-invasively by aeshesiometer, optical coherence tomography and fluorescein staining, respectively. Tau, corneal nerves and immune cells were examined by immunohistochemistry or Western blot. At the early stage of tauopathy, although corneal sensitivity, thickness and nerve fiber density were not greatly altered, corneal nerve abnormalities were observed in the peripheral region of young P301L mice. With aging, the density of abnormal nerves increased, while corneal sensitivity, epithelial thickness, nerve fiber density and length decreased in middle-aged P301L mice compared with WT mice. After corneal epithelial injury in young mice, no difference in reepithelialization was observed between two groups of mice, however, the regeneration of corneal nerves in P301L mice lagged behind WT mice, which was reflected by delayed recovery of corneal sensitivity, decreased corneal nerve density and length and density of CD45+ dendriform cells in P301L mice. In conclusion, our data provide compelling evidence that corneal nerves were changed in a mouse model of tauopathy in an age-dependent manner. Moreover, tau overexpression impairs corneal nerve regeneration. These results suggest that cornea may serve as a promising ocular site for the early diagnosis of tauopathy.
    Digital Access Access Options
  • Article
    Dos Santos CA, Carpenter CS, Arid JD, da Silva ÁÁ, Cardoso LP, Ribeiro APB, Efraim P.
    Food Res Int. 2020 04;130:108900.
    Spray cooling or spray chilling is a technique for obtaining solid lipid microparticles (SLMs) within the diameter range in micrometers using low temperatures and no organic solvents. It is a low-cost technique and is easy to scale-up. The production of SLMs into β-form represents a technological challenge due to the fast crystallization given by the spray cooling system, which generally results in SLMs crystallized into the metastable polymorphic form α. This study focuses on the production and characterization of SLMs by spray cooling using hard fat soybean oil (HS) added of D-limonene or canola oil, aiming to their application as β-seed crystals into lipid systems. The β-seed crystals could turn into an alternative lipid material to be used in fat-based products that present the preferential β' crystallization, like palm oil, increasing its compatibility with cocoa butter (CB) and allowing for the development of substitutes. The obtained SLMs showed spherical geometry and no agglomeration during storage at 25 °C for up to 30 days, verified by scanning electron microscopy (SEM). The mean diameters (D50) were between 150 and 200 μm and the β' and β-form, determined by X-ray diffraction (XRD), appeared immediately after the crystallization process by spray cooling using HS added of 5% D-limonene (the HS control sample presented only the α-form). The SLMs of this study demonstrated their potential use as β-seed crystals into lipid systems.
    Digital Access Access Options
  • Article
    Sidnawi B, Zhou B, Chen Z, Sehgal C, Santhanam S, Wu Q.
    Comput Biol Med. 2024 Sep;179:108900.
    In this study, a physics-based model is developed to describe the entire flow mediated dilation (FMD) response. A parameter quantifying the arterial wall's tendency to recover arises from the model, thereby providing a more elaborate description of the artery's physical state, in concert with other parameters characterizing mechanotransduction and structural aspects of the arterial wall. The arterial diameter's behavior throughout the full response is successfully reproduced by the model. Experimental FMD response data were obtained from healthy volunteers. The model's parameters are then adjusted to yield the closest match to the observed experimental response, hence delivering the parameter values pertaining to each subject. This study establishes a foundation based on which future potential clinical applications can be introduced, where endothelial function and general cardiovascular health are inexpensively and noninvasively quantified.
    Digital Access Access Options
  • Article
    Han Z, Ge L, Wen S, Sun J.
    Fish Shellfish Immunol. 2023 Aug;139:108900.
    Bacterial intestinal inflammation occurs frequently in cultured fish. However, research on the dysfunction of the intestinal physical barrier in fish intestinal inflammation is scarce. In this study, intestinal inflammation in tongue sole Cynoglossus semilaevis was induced by Shewanella algae and the intestinal permeability was investigated. Gene expression patterns in inflammatory factors, tight junction molecules, and keratins 8 and 18 in the intestines were further explored. Histological examinations of the middle intestines showed that S. algae induced pathological lesions of intestinal inflammation and significantly increased the total number of mucous cells (p < 0.01). Ultrastructural observation in the middle intestines showed that intercellular spaces between epithelial cells were significantly wider in infected fish compared with the control (p < 0.01). The positive result of fluorescence in situ hybridization confirmed the presence of S. algae in the intestine. Enhanced Evans blue exudation and increased levels of serum d-lactate and intestinal fatty acid binding protein were suggestive of increased intestinal barrier permeability. The mRNA levels of four pro-inflammatory cytokines, namely IL-6, IL-8, IL-β, and TNF-α, were significantly increased after S. algae infection at most tested time points (p < 0.01 or p < 0.05), while there was an alternating increasing and decreasing trend in the gene expression patterns of IL-10, TGF-β, TLR-2, AP-1, and CASP-1. The mRNA expression of tight junction molecules (claudin-1, claudin-2, ZO-1, JAM-A, and MarvelD3) and keratins 8 and 18 in the intestines was significantly decreased at 6, 12, 24, 48, or 72 h post infection (p < 0.01 or p < 0.05). In conclusion, S. algae infection induced intestinal inflammation accompanied by increased intestinal permeability in tongue sole, and tight junction molecules and keratins were probably associated with the pathological process.
    Digital Access Access Options
doi:10.1016/j.neuropsychologia.2024.108900 doi:10.1016/j.heares.2023.108900 doi:10.1016/j.bioelechem.2025.108900 doi:10.1016/j.mbs.2022.108900 doi:10.1016/j.envint.2024.108900 doi:10.1016/j.dib.2023.108900 doi:10.1016/j.yebeh.2022.108900 doi:10.1016/j.intimp.2022.108900 doi:10.1016/j.jnutbio.2021.108900 doi:10.1016/j.biopsycho.2024.108900 doi:10.1016/j.steroids.2021.108900 doi:10.1016/j.celrep.2021.108900 doi:10.1016/j.carres.2023.108900 doi:10.1016/j.meatsci.2022.108900 doi:10.1016/j.isci.2024.108900 doi:10.1016/j.envres.2019.108900 doi:10.1016/j.exer.2021.108900 doi:10.1016/j.foodres.2019.108900 doi:10.1016/j.compbiomed.2024.108900 doi:10.1016/j.fsi.2023.108900