Search
Filter Results
- Resource Type
- Article231
- Book1
- Book Print1
- Article Type
- Review5
- Systematic Review4
- Clinical Trial2
- Randomized Controlled Trial1
- Result From
- PubMed231
- Lane Catalog1
-
Year
- Journal Title
- Lancet30
- Phys Rev B Condens Matter11
- J Biol Chem10
- Sci Rep9
Search Results
Sort by
- ArticleTseng YT, Cherng R, Harroun SG, Yuan Z, Lin TY, Wu CW, Chang HT, Huang CC.Nanoscale. 2016 May 14;8(18):9771-9.In this study, we have developed a simple photoassisted ligand assembly to fine-tune the photoluminescence (PL) of (11-mercaptoundecyl)-N,N,N-trimethylammonium bromide-capped gold nanodots (11-MUTAB-Au NDs). The 11-MUTAB-Au NDs (size: ca. 1.8 nm), obtained from the reaction of gold nanoparticles (ca. 3 nm) and 11-MUTAB, exhibited weak, near-infrared (NIR) PL at 700 nm with a quantum yield (QY) of 0.37% upon excitation at 365 nm. The PL QY of the Au NDs increased to 11.43% after reaction with 11-mercaptoundecanoic acid (11-MUA) for 30 min under ultraviolet (UV) light, which was accompanied by a PL wavelength shift to the green region (∼520 nm). UV-light irradiation accelerates 11-MUA assembly on the 11-MUTABAu NDs (11-MUA/11-MUTAB-Au NDs) through a radical-mediated reaction. Furthermore, the PL wavelength of the 11-MUA/11-MUTAB-Au NDs can be switched to 640 nm via cysteamine under UV-light irradiation. We propose that the PL of the Au NDs with NIR and visible emissions was originally from the surface thiol-Au complexes and the Au core, respectively. These dramatically different optical properties of the Au NDs were due to variation in the surface ligands, as well as the densities and surface oxidant states of the surface Au atoms/ions. These effects can be controlled by assembling surface thiol ligands and accelerated by UV irradiation.
- ArticleMonowar MM, Rahman MO, Hong CS, Lee S.Sensors (Basel). 2010;10(11):9771-98.Energy conservation is one of the striking research issues now-a-days for power constrained wireless sensor networks (WSNs) and hence, several duty-cycle based MAC protocols have been devised for WSNs in the last few years. However, assimilation of diverse applications with different QoS requirements (i.e., delay and reliability) within the same network also necessitates in devising a generic duty-cycle based MAC protocol that can achieve both the delay and reliability guarantee, termed as multi-constrained QoS, while preserving the energy efficiency. To address this, in this paper, we propose a Multi-constrained QoS-aware duty-cycle MAC for heterogeneous traffic in WSNs (MQ-MAC). MQ-MAC classifies the traffic based on their multi-constrained QoS demands. Through extensive simulation using ns-2 we evaluate the performance of MQ-MAC. MQ-MAC provides the desired delay and reliability guarantee according to the nature of the traffic classes as well as achieves energy efficiency.
- ArticleChandrasekaran AP, Kaushal K, Park CH, Kim KS, Ramakrishna S.Theranostics. 2021;11(20):9752-9771.Background: The most commonly preferred chemotherapeutic agents to treat cancers are small-molecule drugs. However, the differential sensitivity of various cancer cells to small molecules and untargeted delivery narrow the range of potential therapeutic applications. The mechanisms responsible for drug resistance in a variety of cancer cells are also largely unknown. Several deubiquitinating enzymes (DUBs) are the main determinants of drug resistance in cancer cells. Methods: We used CRISPR-Cas9 to perform genome-scale knockout of the entire set of genes encoding ubiquitin-specific proteases (USPs) and systematically screened for DUBs resistant to the clinically evaluated anticancer compound YM155. A series of in vitro and in vivo experiments were conducted to reveal the relationship between USP32 and SLC35F2 on YM155-mediated DNA damage in cancer cells. Results: CRISPR-based dual-screening method identified USP32 as a novel DUB that governs resistance for uptake of YM155 by destabilizing protein levels of SLC35F2, a solute-carrier protein essential for the uptake of YM155. The expression of USP32 and SLC35F2 was negatively correlated across a panel of tested cancer cell lines. YM155-resistant cancer cells in particular exhibited elevated expression of USP32 and low expression of SLC35F2. Conclusion: Collectively, our DUB-screening strategy revealed a resistance mechanism governed by USP32 associated with YM155 resistance in breast cancers, one that presents an attractive molecular target for anti-cancer therapies. Targeted genome knockout verified that USP32 is the main determinant of SLC35F2 protein stability in vitro and in vivo, suggesting a novel way to treat tumors resistant to small-molecule drugs.
- ArticleLi C, Wang F, Xu J, Yao J, Zhang B, Zhang C, Xiao M, Dai S, Li Y, Tan Z.Nanoscale. 2015 Jun 07;7(21):9771-8.Alcohol soluble titanium chelate TIPD (titanium (diisopropoxide) bis(2,4-pentanedionate)) was used as an electron transporting layer to form an ohmic contact with the negative electrode, aiming to enhance the charge extraction and suppress the charge recombination for high performance CH3NH3PbI3/PCBM-based PHJ perovskite solar cells. The TIPD layer shows excellent suitability to CH3NH3PbI3 perovskite synthesized by different methods. For one-step synthesized CH3NH3PbI3, the power conversion efficiency (PCE) of the device with the TIPD buffer reaches 8.75%, with a nearly 33% increase in comparison with the device without the buffer layer (6.58%). For two-step synthesized CH3NH3PbI3, an open-circuit voltage (Voc) of 0.89 V, a short-circuit current density (Jsc) of 22.57 mA cm(-2), and a fill factor (FF) of 64.5%, corresponding to a PCE of 12.95% for the device with a TIPD buffer layer were achieved, which is among the best performances reported in the literature for CH3NH3PbI3/PCBM-based PHJ perovskite solar cells.
- Articlede Souza GA, Soares MB, Brum AS, Zucolotto M, Sayão JM, Weinschütz LC, Kellner AWA.PeerJ. 2020;8:e9771.Although the knowledge of bone histology of non-avian theropods has advanced considerably in recent decades, data about the bone tissue patterns, growth dynamics and ontogeny of some taxa such as abelisauroids are still limited. Here we describe the bone microstructure and growth dynamics of the Brazilian noasaurine Vespersaurus paranaensis using five femora and six tibiae and quantify the annual growth marks through retrocalculation of missing ones to estimate ontogenetic ages. The femoral series comprises four femoral histological classes (FHC I-IV), varying from two annuli or LAGs to seven LAGs. Femora show that sexual maturity was achieved around the seventh to tenth year of life, whereas the tibiae suggest it was earlier (around three to five years old). Tibiae represent three histological classes (THC I-III) displaying from three to nine LAGs. Two tibiae (THC III) exhibit an external fundamental system indicating that these specimens reached full skeletal size. The heterogeneous maturity observed in Vespersaurus hind limb bones could result from differential allometry scaling between femora and tibiae length with the body length. The predominant parallel-fibered bone matrix suggests that Vespersaurus grew more slowly than most theropods, including other abelisauroids, in a pattern shared with the noasaurines Masiakasaurus knopfleri from Madagascar and CPPLIP 1490 from Brazil. This deviation from the typical theropod growth pattern may be mainly correlated with small body size, but also may related to resource limitation imposed by the arid climate prevailing in southwestern Gondwana during Cretaceous. Moreover, given the ecological and phylogenetic similarities among these taxa, such features would probably be apomorphic within Noasauridae.
- ArticleAbbate G, Colombo SM, Semenzin C, Sato N, Liu K, Ainola C, Milani A, Fior G, Obonyo N, White N, Chiumello D, Pauls J, Suen JY, Fraser JF, Li Bassi G.Sci Rep. 2024 04 29;14(1):9771.Transpulmonary pressure can be estimated using esophageal balloon (EB) catheters, which come in a variety of manufacturing configurations. We assessed the performance of novel polyurethane EB designs, Aspisafe NG and NG+, against existing alternatives. We created a biomechanical model of the chest cavity using a plastic chamber and an ex-vivo porcine esophagus. The chamber was pressurized (- 20 and + 20 cmH2O) to simulate pleural pressures. We conducted tests with various EB inflation volumes and measured transesophageal pressure (TEP). TEP measurement was defined as accurate when the difference between pressure within the EB and chamber was 0 ± 1 cmH2O. We computed the minimal (Vaccuracy-min) and maximal (Vaccuracy-max) EB inflation volumes of accuracy. Inflation volumes were further validated using a surrogate method derived by the clinically validated positive pressure occlusion test (PPOT). When the esophageal balloons were filled with inflation volumes within the range provided by the manufacturers, the accuracy of TEP measurements was marginal. Our tests found median Vaccuracy-min across EB of 0.00-0.50 mL (p = 0.130), whereas Vaccuracy-max ranged 0.50-2.25 mL (p = 0.002). Post PPOT validation, median TEP was - 0.4 cmH2O (- 1.5 to 0.3) (p < 0.001 among catheters). The Aspisafe NG and NG+ were accurate in 81.7% and 77.8% of the measurements, respectively. We characterized two new EBs, which demonstrated good benchtop accuracy in TEP measurements. However, accuracy was notably influenced by the precise selection of EB inflation volumes.
- ArticleHou W, Shen L, Zhu Y, Wang X, Du T, Yang F, Zhu Y.Int J Nanomedicine. 2024;19:9771-9797.Fullerenes hold tremendous potential as alternatives to conventional chemotherapy or radiotherapy for tumor treatment due to their abilities to photodynamically kill tumor cells, destroy the tumor vasculature, inhibit tumor metastasis and activate anti-tumor immune responses, while protecting normal tissue through antioxidative effects. The symmetrical hollow molecular structures of fullerenes with abundant C=C bonds allow versatile chemical modification with diverse functional groups, metal clusters and biomacromolecules to synthesize a wide range of fullerene derivatives with increased water solubility, improved biocompatibility, enhanced photodynamic properties and stronger targeting abilities. This review introduces the anti-tumor mechanisms of fullerenes and summarizes the most recent works on the functionalization of fullerenes and the application of fullerene derivatives in tumor treatment. This review aims to serve as a valuable reference for further development and clinical application of anti-tumor fullerene derivatives.
- ArticleOliveri IP, Malandrino G, Di Bella S.Inorg Chem. 2014 Sep 15;53(18):9771-7.This paper reports for the first time the irreversible thermally induced phase transition, accompanied by color change, and the vapochromic behavior of an amphiphilic, Lewis acidic Zn(II) Schiff-base complex, through detailed X-ray diffraction, thermogravimetric analysis and differential scanning calorimetry, and optical absorption studies. The unprecedented irreversible phase transition for such kind of complexes is associated with a thermal, lamellar-to-hexagonal columnar structural transition, which involves a different arrangement of each molecular unit within the assembled structure, H- and J-type aggregates, respectively, responsible for the thermochromic behavior. The vapochromism, investigated either in powder samples or in thermally annealed cast films, is related to the formation of 1:1 adducts upon exposure to vapors of strong Lewis bases and implies dramatic optical absorption variations and naked-eye observation of the change in color from red-brown to red. The chemisorption process is fast, completely reversible, reproducible, and selective for amines. The reversible switching of the chemisorption-desorption process in cast films is demonstrated by successive cycles, amine exposure and subsequent heating, by monitoring the substantial optical absorption changes in the visible region. Vapochromism of this material can potentially be used to detect vapors of volatile amines.
- ArticleInamoto K, Okawa H, Taneda H, Sato M, Hirono Y, Yonemoto M, Kikkawa S, Kondo Y.Chem Commun (Camb). 2012 Oct 09;48(78):9771-3.Onium amides, generated in situ from the combination of aminosilanes and onium fluorides (R(4)PF, R(4)NF), are employed for the first time as bases for catalytic deprotonative functionalization of C(sp(2))-H and activated C(sp(3))-H bonds under mild conditions.
- ArticleMahalingam S, Xu Z, Edirisinghe M.Langmuir. 2015 Sep 15;31(36):9771-80.In this work, the biosensing and antibacterial capabilities of PVA-lysozyme microbubbles have been explored. Gas-filled PVA-lysozyme microbubbles with and without gold nanoparticles in the diameter range of 10 to 250 μm were produced using a single-step pressurized gyration process. Fluorescence microscopy showed the integration of gold nanoparticles on the shell of the microbubbles. Microbubbles prepared with gold nanoparticles showed greater optical extinction values than those without gold nanoparticles, and these values increased with the concentration of the gold nanoparticles. Both types of microbubbles showed antibacterial activity against Gram-negative Escherichia coli (E. coli), with the bubbles containing the gold nanoparticles performing better than the former. The conjugation of the microbubbles with alkaline phosphatase allowed the detection of pesticide paraoxon in aqueous solution, and this demonstrates the biosensing capabilities of these microbubbles.
- ArticleYan D, Yu Y, Ni Q, Meng Q, Wu H, Ding S, Liu X, Tang C, Liu Q, Yang K.Sci Rep. 2023 06 16;13(1):9771.T-box transcription factor 15 (TBX15) is upregulated in a variety of tumors and has been reported to promote uncontrolled proliferation of tumor cells and induce tumor cells to avoid apoptosis, thus accelerating the malignant transformation of malignant tumors. However, the prognostic value of TBX15 in glioma and its relationship with immune infiltration remain unknown. In this study, we intended to explore the prognostic value of TBX15 and its link to glioma immune infiltration and examine TBX15 expression in pan-cancer using RNAseq data in TPM format from TCGA and GTEx. TBX15 mRNA and protein expressions in glioma cells and adjacent normal tissue were detected and compared by RT-qPCR and Western blot. The effect of TBX15 on survival was assessed by Kaplan-Meier Method. The correlation between TBX15 upregulation and the clinicopathological characteristics of glioma patients was assessed by using TCGA databases, and the relationship between TBX15 and other genes in glioma was evaluated by using TCGA data. The top 300 genes most significantly associated with TBX15 were selected to establish a PPI network through the STRING database. The relationship between TBX15 mRNA expression and immune cell infiltration was explored by using ssGSEA and the TIMER Database. It was found that TBX15 mRNA expression in glioma tissues was significantly higher than that in the adjacent normal tissues, and this difference was most obvious in high-grade gliomas. TBX15 expression was increased in human gliomas and associated with worse clinicopathological characteristics and poorer survival prognosis in glioma patients. In addition, elevated TBX15 expression was linked to a collection of genes involved in immunosuppression. In conclusion, TBX15 played an important role in immune cell infiltration in glioma and may prove to be a predictor of the prognosis in glioma patients.
- ArticleTehrani AY, White Z, Tung LW, Zhao RRY, Milad N, Seidman MA, Sauge E, Theret M, Rossi FMV, Esfandiarei M, van Breemen C, Bernatchez P.Sci Rep. 2022 06 13;12(1):9771.There are no therapeutics that directly enhance chronic endothelial nitric oxide (NO) release, which is typically associated with vascular homeostasis. In contrast, angiotensin II (AngII) receptor type 1 (AT1R) blockers (ARBs) can attenuate AngII-mediated oxidative stress, which often leads to increased endothelial NO bioavailability. Herein, we investigate the potential presence of direct, AngII/AT1R-independent ARB class effects on endothelial NO release and how this may result in enhanced aortic wall homeostasis and endothelial NO-specific transcriptome changes. Treatment of mice with four different ARBs induced sustained, long-term inhibition of vascular contractility by up to 82% at 16 weeks and 63% at 2 weeks, an effect reversed by L-NAME and absent in endothelial NO synthase (eNOS) KO mice or angiotensin converting enzyme inhibitor captopril-treated animals. In absence of AngII or in tissues with blunted AT1R expression or incubated with an AT2R blocker, telmisartan reduced vascular tone, supporting AngII/AT1R-independent pleiotropism. Finally, telmisartan was able to inhibit aging- and Marfan syndrome (MFS)-associated aortic root widening in NO-sensitive, BP-independent fashions, and correct aberrant TGF-β signaling. RNAseq analyses of aortic tissues identified early eNOS-specific transcriptome reprogramming of the aortic wall in response to telmisartan. This study suggests that ARBs are capable of major class effects on vasodilatory NO release in fashions that may not involve blockade of the AngII/AT1R pathway. Broader prophylactic use of ARBs along with identification of non-AngII/AT1R pathways activated by telmisartan should be investigated.
- ArticleCabras C, Kaleta K, Mróz J, Loi G, Sechi C.Heliyon. 2022 Jun;8(6):e09771.This study explores gender and age differences in forgivingness using the crosscultural and stress-and-coping perspective. Polish and Italian versions of the Heartland Forgiveness scale (HFS) were used. The sample consisted of 1957 individuals aged 18-80 (61% females and 39% males). A 3-way between groups ANOVA was used to examine the main effects and interactions of country, age and gender as they relate to total HFS score. Post-hoc analyses were performed where appropriate. The results revealed that Polish and Italian respondents did not differ in the level of the general tendency to forgive. Gender differences in trait forgiveness were reported in whole sample and in Italian subsample, showing males to be more forgiving than females. Further, our results for all study participants, in Polish subsample and among Italian males showed that older adults were more forgiving than young respondents, which is consistent with the previous findings showing an increase in forgivingness with age.
- ArticlePabst M, Fagerer SR, Köhling R, Küster SK, Steinhoff R, Badertscher M, Wahl F, Dittrich PS, Jefimovs K, Zenobi R.Anal Chem. 2013 Oct 15;85(20):9771-6.Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a fast analysis tool employed for the detection of a broad range of analytes. However, MALDI-MS has a reputation of not being suitable for quantitative analysis. Inhomogeneous analyte/matrix co-crystallization, spot-to-spot inhomogeneity, as well as a typically low number of replicates are the main contributing factors. Here, we present a novel MALDI sample target for quantitative MALDI-MS applications, which addresses the limitations mentioned above. The platform is based on the recently developed microarray for mass spectrometry (MAMS) technology and contains parallel lanes of hydrophilic reservoirs. Samples are not pipetted manually but deposited by dragging one or several sample droplets with a metal sliding device along these lanes. Sample is rapidly and automatically aliquoted into the sample spots due to the interplay of hydrophilic/hydrophobic interactions. With a few microliters of sample, it is possible to aliquot up to 40 replicates within seconds, each aliquot containing just 10 nL. The analyte droplet dries immediately and homogeneously, and consumption of the whole spot during MALDI-MS analysis is typically accomplished within few seconds. We evaluated these sample targets with respect to their suitability for use with different samples and matrices. Furthermore, we tested their application for generating calibration curves of standard peptides with α-cyano-4-hdydroxycinnamic acid as a matrix. For angiotensin II and [Glu(1)]-fibrinopeptide B we achieved coefficients of determination (r(2)) greater than 0.99 without the use of internal standards.
- ArticleLi Y, Wang Z, Wu X, Wang G, Gu G, Ren H, Hong Z, Ren J.Sci Rep. 2021 05 07;11(1):9771.The purpose of this study was to evaluate genome-wide DNA methylation changes in intestinal mucosa tissue of adult patients with Crohn's disease comprehensively. DNA methylation chip was used to analyze abnormal methylation sites among penetrating and non-penetrating intestinal mucosa tissue of Crohn's disease and normal intestinal mucosa tissue of healthy controls. Methylation abnormalities of different locus were verified by pyrosequencing and quantitative polymerase chain reaction. Differential DNA methylation sites were participated in the positive regulation of apoptosis and the positive regulation of IL-8 production and were enriched in signaling pathways related to inflammatory bowel disease and extracellular matrix receptor interaction signaling pathways. Correlation analysis showed that the methylation abnormalities of HLA-DRB1 (r = - 0.62, P < 0.001), MUC1 (r = - 0.45, P = 0.01), YPEL5 (r = - 0.55, P = 0.001) and CBLB (r = - 0.62, P < 0.001) were significantly negatively correlated with their relative expression levels. The degree of methylation abnormality of MUC1 was negatively correlated with the disease activity score of Crohn's disease (r = - 0.50, P = 0.01). Apoptosis, interleukin-8 production and abnormal extracellular matrix might be involved in the mechanism of penetrating intestinal mucosal lesions in Crohn's disease. The degree of abnormal methylation of MUC1 was negatively correlated with the disease activity of Crohn's disease.
- ArticleHara KY, Aoki N, Kobayashi J, Kiriyama K, Nishida K, Araki M, Kondo A.Appl Microbiol Biotechnol. 2015 Nov;99(22):9771-8.Glutathione is a valuable tripeptide widely used in the pharmaceutical, food, and cosmetic industries. In industrial fermentation, glutathione is currently produced primarily using the yeast Saccharomyces cerevisiae. Intracellular glutathione exists in two forms; the majority is present as reduced glutathione (GSH) and a small amount is present as oxidized glutathione (GSSG). However, GSSG is more stable than GSH and is a more attractive form for the storage of glutathione extracted from yeast cells after fermentation. In this study, intracellular GSSG content was improved by engineering thiol oxidization metabolism in yeast. An engineered strain producing high amounts of glutathione from over-expression of glutathione synthases and lacking glutathione reductase was used as a platform strain. Additional over-expression of thiol oxidase (1.8.3.2) genes ERV1 or ERO1 increased the GSSG content by 2.9-fold and 2.0-fold, respectively, compared with the platform strain, without decreasing cell growth. However, over-expression of thiol oxidase gene ERV2 showed almost no effect on the GSSG content. Interestingly, ERO1 over-expression did not decrease the GSH content, raising the total glutathione content of the cell, but ERV1 over-expression decreased the GSH content, balancing the increase in the GSSG content. Furthermore, the increase in the GSSG content due to ERO1 over-expression was enhanced by additional over-expression of the gene encoding Pdi1, whose reduced form activates Ero1 in the endoplasmic reticulum. These results indicate that engineering the thiol redox metabolism of S. cerevisiae improves GSSG and is critical to increasing the total productivity and stability of glutathione.
- ArticleYamamoto T, Iwase H, Patel D, Jagdale A, Ayares D, Anderson D, Eckhoff DE, Cooper DKC, Hara H.Sci Rep. 2020 06 17;10(1):9771.Triple-knockout (TKO) pigs (with added protective human transgenes) are likely to be optimal sources of organs for clinical organ xenotransplantation because many humans have minimal or no natural antibody to TKO pig cells. However, Old World monkeys (OWMs) have naturally-existing antibodies directed to TKO cells. We measured anti-pig IgM/IgG binding, and complement-dependent cytotoxicity to wild-type (WT), α1,3-galactosyltransferase gene-knockout (GTKO), and TKO pig peripheral blood mononuclear cells (PBMCs) using sera from humans, several OWMs, and two New World monkeys (NWMs). Furthermore, we compared survival of GTKO (n = 5) and TKO (n = 3) pig kidneys in baboons. OWMs had significantly greater IgM binding and cytotoxicity to TKO PBMCs than humans or NWMs. Mean anti-TKO IgM was significantly higher in OWMs and significantly lower in NWMs than in humans. Cytotoxicity of OWM sera to TKO PBMCs was significantly greater than of human serum, but there was no significant difference between human and NWM sera. The median survival of TKO pig kidneys (4 days) in baboons was significantly shorter than that of GTKO kidneys (136 days) (p < 0.05). Even though considered ideal for clinical xenotransplantation, the presence of naturally-existing antibodies to TKO pig cells in OWMs complicates the transplantation of TKO pig kidneys in OWMs.
- ArticleElhawary S, El-Hefnawy H, Mokhtar FA, Sobeh M, Mostafa E, Osman S, El-Raey M.Int J Nanomedicine. 2020;15:9771-9781.INTRODUCTION: Jasminum officinale L. is a very important medicinal and industrial flowering aromatic plant.
METHODS: The present study deals with Jasminum officinale L. leaves extract (JOLE) as a reducing and capping agent for the synthesis of silver nanoparticles (AgNPs) by the green pathway. Phenolic profile of the extract was evaluated using HPLC-PDA/MS/MS technique. Jasminum officinale L. leaves extract silver nanoparticles (JOLE-AgNPs) were characterized by ultraviolet light (UV), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), zeta potential and X-ray diffraction (XRD). JOLE-AgNPs were examined for their cytotoxic activities by neutral red uptake assay (NRU) against bladder (5637) and breast cancer (MCF-7) cell lines.
RESULTS: HPLC-PDA/MS/MS tentatively identified 51 compounds of different chemical classes. UV spectra showed absorption peak at λmax = 363 nm. The biosynthesized AgNPs were predominantly spherical in shape with an average size of 9.22 nm by TEM. The face cubic center (fcc) nature of silver nanoparticles was proved by XRD diffractogram. JOLE-AgNPs exhibited high cytotoxic activity against 5637 and MCF-7 cell lines compared to the cytotoxic activities of JOLE with IC50 of 13.09 µg/mL and 9.3 µg/mL, respectively.
DISCUSSION: The silver nanoparticles formed by Jasminum officinale L. showed high cytotoxic activities against MCF-7 and 5637 cell lines and can be introduced as a new alternative cytotoxic medication. - ArticleKamboj N, Metre RK.Inorg Chem. 2024 May 27;63(21):9771-9785.A new dinuclear Ni(II) complex 1, [Ni2II(dtbh-PLY)2], is synthesized from 9-(2-(3,6-di-tert-butyl-2-hydroxybenzylidene)hydrazineyl)-1H-phenalen-1-one, dtbh-PLYH2 ligand, and structurally characterized by various analytical tools including the single-crystal X-ray diffraction (SCXRD) technique. In the solid state, both Ni(II) metal centers in complex 1 exist in a distorted square planar geometry and display the presence of rare Ni···H-C anagostic interactions to form a one-dimensional (1-D) linear motif in the supramolecular array. Complex 1 is further stabilized in the solid state by π-π-stacking interactions between the highly delocalized phenalenyl rings. The redox features of complex 1 have been analyzed by the cyclic voltammetry (CV) technique in solution as well as in the solid state, revealing the crucial involvement of both the Ni(II) metal centers for undergoing quasi-reversible oxidation reactions on the application of an anodic sweep. A complex 1-modified glassy carbon electrode, GC-1, is employed as an electrocatalyst for oxygen evolution reaction (OER) in 1.0 M KOH, giving an OER onset at 1.45 V, and very low OER overpotential, 300 mV vs the reversible hydrogen electrode (RHE) to reach 10 mA cm-2 current density. Furthermore, GC-1 displayed fast OER kinetics with a Tafel slope of 40 mV dec-1, a significantly lower Tafel slope value than those of previously reported molecular Ni(II) catalysts. In situ electrochemical experiments and postoperational UV-vis, Fourier transform infrared (FT-IR), scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS), and X-ray photoelectron spectroscopy (XPS) studies were performed to analyze the stability of the molecular nature of complex 1 and to gain reasonable insights into the true OER catalyst.
- ArticleGuo R, Liao H, Meng Y, Shi X, He Y, Zhu Z, Guo W.J Inflamm Res. 2024;17:9757-9771.Background: Fostamatinib is the first spleen tyrosine kinase inhibitor approved for the treatment of chronic adult immune thrombocytopenia via blocking autoantibody-mediated platelet phagocytosis. Nevertheless, the potential of fostamatinib as therapeutic agent against acute inflammatory diseases has not been examined. This study aimed to investigate the effects of fostamatinib on the activation of macrophages and neutrophils and its therapeutic effects on SIRS.
Methods: First, RT-qPCR and ELISA were used to detect the effects of fostamatinib on the expression and secretion of inflammatory factors by peritoneal macrophages (PMs) induced with TLR agonists. The activation and ROS release of neutrophils were detected by flow cytometry. Subsequently, the therapeutic effect of fostamatinib on LPS-induced SIRS in mice was examined. Finally, we also explored the underlying mechanisms of fostamatinib exerting pharmacodynamic effects by analyzing its effects on LPS-induced gene expression profile and the activation of signaling pathways in PMs through transcriptome sequencing and Western blot.
Results: We found that fostamatinib inhibited the expression and secretion of TNF-α, IL-6, CCL2, CCL3, and CXCL10 (*P < 0.05) in PMs induced by LPS. Fostamatinib also reduced the activation of neutrophils stimulated by LPS, and suppressed the release of ROS by neutrophils. In SIRS mice, fostamatinib diminished the levels of inflammatory factors, and inhibited the excessive consumption of neutrophils in bone marrow. Transcriptome sequencing results showed that fostamatinib significantly inhibited the transcription of Cxcl10, Isg20, Mx1, Rsd2, etc. (*P < 0.05) in PMs induced by LPS. Meanwhile, fostamatinib selectively blocked the phosphorylation of STAT1 and STAT3 in PMs induced by LPS and cytokines (IFN-γ and IL-6).
Conclusion: Fostamatinib can significantly inhibit LPS-induced inflammatory response through blocking STAT1/3 signaling pathways and has the potential to be used in the therapy of acute inflammatory diseases, especially SIRS and sepsis, which are resulting from the infection of Gram-negative bacteria.