Search
Filter Results
- Resource Type
- Article602
- Book1
- Book Print1
- Article Type
- Review22
- Clinical Trial7
- Randomized Controlled Trial5
- Systematic Review3
- Result From
- PubMed602
- Lane Catalog1
-
Year
- Journal Title
- Science46
- Nature32
- Br Med J30
- Gene24
Search Results
Sort by
- ArticleFeng F, Shen J, Qi Q, Zhang Y, Ni S.Theranostics. 2024;14(14):5725-5742.Brain tumors pose formidable challenges in oncology due to the intricate biology and the scarcity of effective treatment modalities. The emergence of immunotherapy has opened new avenues for innovative therapeutic strategies. Chimeric antigen receptor, originally investigated in T cell-based therapy, has now expanded to encompass macrophages, presenting a compelling avenue for augmenting anti-tumor immune surveillance. This emerging frontier holds promise for advancing the repertoire of therapeutic options against brain tumors, offering potential breakthroughs in combating the formidable malignancies of the central nervous system. Tumor-associated macrophages constitute a substantial portion, ranging from 30% to 50%, of the tumor tissue and exhibit tumor-promoting phenotypes within the immune-compromised microenvironment. Constructing CAR-macrophages can effectively repolarize M2-type macrophages towards an M1-type phenotype, thereby eliciting potent anti-tumor effects. CAR-macrophages can recruit T cells to the brain tumor site, thereby orchestrating a remodeling of the immune niche to effectively inhibit tumor growth. In this review, we explore the potential limitations as well as strategies for optimizing CAR-M therapy, offering insights into the future direction of this innovative therapeutic approach.
- ArticleHu S, Zhu L, Song Y, Zhao X, Chen Q, Pan Y, Zhang J, Bai Y, Zhang H, Shao C.Theranostics. 2021;11(12):5742-5758.Rationale: Radiotherapy has become a mainstay for tumor management, and more than 50% of patients with thoracic tumor need to be treated with radiotherapy. However, the potential adverse effects of thoracic radiotherapy on the reproductive system remain elusive. Methods: Western blot analysis, immunofluorescence assay and transmission electron microscopy (TEM) analysis were performed to investigate the integrity of blood-testis barrier (BTB) in male mice after hypofractionated irradiation (IR) on the right thorax. RNA sequencing, co-immunoprecipitation (IP), Duolink PLA and inhibitor experiments were carried out to demonstrate the molecular mechanisms of the BTB dynamics changes and the subsequent reproductive effect. Results: It was found that the hypofractionated IR on right thorax evoked ultrastructural destruction in distant testes, and thus caused radiation-induced abscopal reproductive effect (RIARE) in male mice. Mechanistically, thoracic IR induced significant nuclear translocation of Rac Family Small GTPase 1 (Rac1) in abscopal Sertoli cells, which closely correlated with the activation of TNF-α/p38 mitogen activated protein kinase (MAPK) pathway. Of note, YWHAZ, a critical polarity protein, was found to be co-localized with Rac1 in Sertoli cells, and this interaction was indispensable for thoracic IR-induced Rac1 nuclear translocation and subsequent degradation of BTB-associated proteins. Conclusions: Our findings imply for the first time that YWHAZ-mediated Rac1 nuclear translocation plays central roles in RIARE, and TNF-α/p38 MAPK/Rac1 axis can be employed as a therapeutic target against RIARE for young male patients receiving hypofractionated radiotherapy.
- ArticleRhodes NJ, Prozialeck WC, Lodise TP, Venkatesan N, O'Donnell JN, Pais G, Cluff C, Lamar PC, Neely MN, Gulati A, Scheetz MH.Antimicrob Agents Chemother. 2016 10;60(10):5742-51.Vancomycin has been associated with acute kidney injury (AKI). However, the pharmacokinetic/toxicodynamic relationship for AKI is not well defined. Allometrically scaled vancomycin exposures were used to assess the relationship between vancomycin exposure and AKI. Male Sprague-Dawley rats received clinical-grade vancomycin in normal saline (NS) as intraperitoneal (i.p.) injections for 24- to 72-h durations with doses ranging 0 to 200 mg/kg of body weight divided once or twice daily. Urine was collected over the protocol's final 24 h. Renal histopathology was qualitatively scored. Urinary biomarkers (e.g., cystatin C, clusterin, kidney injury molecule 1 [KIM-1], osteopontin, lipocalin 2/neutrophil gelatinase-associated lipocalin 2) were assayed using a Luminex xMAP system. Plasma vancomycin concentrations were assayed by high-performance liquid chromatography with UV detection. A three-compartment vancomycin pharmacokinetic model was fit to the data with the Pmetrics package for R. The exposure-response in the first 24 h was evaluated using Spearman's nonparametric correlation coefficient (rs) values for the area under the concentration-time curve during the first 24 h (AUC0-24), the maximum concentration in plasma during the first 24 h (Cmax0-24 ), and the lowest (minimum) concentration in plasma after the dose closest to 24 h (Cmin0-24 ). A total of 52 rats received vancomycin (n = 42) or NS (n = 10). The strongest exposure-response correlations were observed between AUC0-24 and Cmax0-24 and urinary AKI biomarkers. Exposure-response correlations (rs values) for AUC0-24, Cmax0-24 , and Cmin0-24 were 0.37, 0.39, and 0.22, respectively, for clusterin; 0.42, 0.45, and 0.26, respectively, for KIM-1; and 0.52, 0.55, and 0.42, respectively, for osteopontin. However, no differences in histopathological scores were observed. Optimal sampling times after administration of the i.p. dose were 0.25, 0.75, 2.75, and 8 h for the once-daily dosing schemes and 0.25, 1.25, 14.5, and 17.25 h for the twice-daily dosing schemes. Our observations suggest that AUC0-24 or Cmax0-24 correlates with increases in urinary AKI biomarkers.
- ArticleKumphune S, Chattipakorn S, Chattipakorn N.Curr Pharm Des. 2013;19(32):5742-54.Insulin resistance is associated with the impairment of the response of insulin receptor to insulin, resulting in the reduction of glucose uptake, leading to the alteration of myocardial glucose metabolism, impairment of cardiac electrophysiology, and increased susceptibility to ischemia-induced myocardial injury. Insulin resistance is associated with the impairment of the intracellular insulin signal transduction pathway. Among the MAPK family, p38-MAPK is a serine/threonine protein kinase, which has been shown to play an important role in cellular responses to various kinds of stress, including insulin resistance. Since growing evidence indicates the involvement of p38-MAPK in cardiovascular dysfunction, it is possible that the activation of p38-MAPK is responsible in part as a causative mechanism for cardiovascular complications in the insulin resistant heart. In addition, several anti-diabetic drugs have been shown to affect the myocardial p38-MAPK pathway. The effect of these drugs on p38-MAPK could be associated with their cardiovascular results in patients with insulin resistance. In this article, the signal transduction pathways of myocardial p38-MAPK activation in the insulin resistant heart, as well as the effects of anti-diabetic drugs on the myocardial p38-MAPK pathway, are comprehensively reviewed. Furthermore, the possible therapeutic approach regarding the utilization of a p38-MAPK inhibitor in diabetes patients to prevent cardiovascular complications is also addressed.
- ArticlePeng CW, Tian Q, Yang GF, Fang M, Zhang ZL, Peng J, Li Y, Pang DW.Biomaterials. 2012 Aug;33(23):5742-52.Tumor microenvironment has been increasingly recognized as a complex and dynamic cancer society influencing tumor invasion and progression. The prognostic significance of this microenvironment is yet to be fully appreciated. A holistic approach to obtaining integrated information on key components in tumor microenvironment is essential. Here we reported on a quantum dots (QDs)-based simultaneous in-situ detection of infiltrating macrophages, tumor microvessels density (MVD) and neovessels maturity, in gastric cancer tissues, to obtain integrated information on these components, termed as combined tumor stromal features. These stromal features had the comparable prognostic value for overall survival, and even better prognostic value for disease-free survival, compared with traditional tumor cell-based clinico-pathological parameters. Subgroups of gastric cancer patients with favorable and unfavorable combined tumor stromal features were identified, with significantly different clinical outcomes. This study demonstrated the technical advantages of QDs-based simultaneous detection of multiple biomarkers in situ, revealed the important role of tumor stroma in cancer biology, and opened a new field to predict clinical outcome in gastric cancer from the perspectives of tumor microenvironment.
- ArticleZhang H, Hong K, Song Q, Zhu B, Wu G, Yu B.J Cancer. 2024;15(17):5742-5761.Cellular senescence is closely associated with cancer development and progression. There is ample evidence that tumor stromal cells, especially cancer-associated fibroblasts (CAFs) undergo senescence in response to various stimuli. However, the possible biological roles and prognostic significance of senescent CAFs in esophageal squamous cell carcinoma (ESCC) remain unexplored. In this study, we found that CAFs exhibited a significantly higher level of cellular senescence than other cell clusters at the single-cell level. Then, we constructed a CAFs senescence-associated risk model with 7 genes (GEM, SLC2A6, CXCL14, STX11, EFHD2, PTX3, and HCK) through Cox regression and LASSO analysis. Kaplan-Meier survival analysis revealed that the risk model was significantly correlated with worse prognosis in training and validation cohorts. Subsequent analysis indicated that the risk model was an independent prognostic factor. In addition, the signature showed a distinct negative correlation with immune cell infiltration and immunotherapy responses. In vitro experiments showed remarkably higher mRNA and protein levels of prognosis-related genes (STX11 and EFHD2) in senescent CAFs than control group, consistent with the bioinformatics analysis results. Moreover, senescent CAFs significantly promoted ESCC cell proliferation and migration as shown by CCK-8 and scratch assays. In conclusion, our study identified a novel CAFs senescence-based classifier that may help predict prognosis of ESCC, and a thorough characterization of the signature could also be helpful in evaluating the response of ESCC to anti-tumor therapies and provide meaningful clinical options for cancer treatment.
- ArticleShang SL, Lindwall G, Wang Y, Redwing JM, Anderson T, Liu ZK.Nano Lett. 2016 09 14;16(9):5742-50.Unprecedented interest has been spurred recently in two-dimensional (2D) layered transition metal dichalcogenides (TMDs) that possess tunable electronic and optical properties. However, synthesis of a wafer-scale TMD thin film with controlled layers and homogeneity remains highly challenging due mainly to the lack of thermodynamic and diffusion knowledge, which can be used to understand and design process conditions, but falls far behind the rapidly growing TMD field. Here, an integrated density functional theory (DFT) and calculation of phase diagram (CALPHAD) modeling approach is employed to provide thermodynamic insight into lateral versus vertical growth of the prototypical 2D material MoS2. Various DFT energies are predicted from the layer-dependent MoS2, 2D flake-size related mono- and bilayer MoS2, to Mo and S migrations with and without graphene and sapphire substrates, thus shedding light on the factors that control lateral versus vertical growth of 2D islands. For example, the monolayer MoS2 flake in a small 2D lateral size is thermodynamically favorable with respect to the bilayer counterpart, indicating the monolayer preference during the initial stage of nucleation; while the bilayer MoS2 flake becomes stable with increasing 2D lateral size. The critical 2D flake-size of phase stability between mono- and bilayer MoS2 is adjustable via the choice of substrate. In terms of DFT energies and CALPHAD modeling, the size dependent pressure-temperature-composition (P-T-x) growth windows are predicted for MoS2, indicating that the formation of MoS2 flake with reduced size appears in the middle but close to the lower T and higher P "Gas + MoS2" phase region. It further suggests that Mo diffusion is a controlling factor for MoS2 growth owing to its extremely low diffusivity compared to that of sulfur. Calculated MoS2 energies, Mo and S diffusivities, and size-dependent P-T-x growth windows are in good accord with available experiments, and the present data provide quantitative insight into the controlled growth of 2D layered MoS2.
- ArticleGray N, Adesina-Georgiadis K, Chekmeneva E, Plumb RS, Wilson ID, Nicholson JK.Anal Chem. 2016 06 07;88(11):5742-51.A rapid gradient microbore ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) method has been developed to provide a high-throughput analytical platform for the metabolic phenotyping of urine from large sample cohorts. The rapid microbore metabolic profiling (RAMMP) approach was based on scaling a conventional reversed-phase UPLC-MS method for urinary profiling from 2.1 mm × 100 mm columns to 1 mm × 50 mm columns, increasing the linear velocity of the solvent, and decreasing the gradient time to provide an analysis time of 2.5 min/sample. Comparison showed that conventional UPLC-MS and rapid gradient approaches provided peak capacities of 150 and 50, respectively, with the conventional method detecting approximately 19 000 features compared to the ∼6 000 found using the rapid gradient method. Similar levels of repeatability were seen for both methods. Despite the reduced peak capacity and the reduction in ions detected, the RAMMP method was able to achieve similar levels of group discrimination as conventional UPLC-MS when applied to rat urine samples obtained from investigative studies on the effects of acute 2-bromophenol and chronic acetaminophen administration. When compared to a direct infusion MS method of similar analysis time the RAMMP method provided superior selectivity. The RAMMP approach provides a robust and sensitive method that is well suited to high-throughput metabonomic analysis of complex mixtures such as urine combined with a 5-fold reduction in analysis time compared with the conventional UPLC-MS method.
- ArticleSui X, Ji M, Lan X, Mi W, Hao C, Qiu J.Inorg Chem. 2013 May 20;52(10):5742-8.The electronically excited state and luminescence property of metal-organic framework Zn(3-tzba)(2,2'-bipy)(H2O)·nH2O have been investigated using the density functional theory (DFT) and time-dependent DFT (TDDFT). The calculated geometry and infrared spectra in the ground state are consistent with the experimental results. The frontier molecular orbitals and electronic configuration indicated that the origin of luminescence is attributed to a ligand-to-ligand charge transfer (LLCT). We theoretically demonstrated that the hydrogen bond H47···O5═C is weakened in the excited state S1; the weakening of the excited-state hydrogen bonding should be beneficial to the luminescence. To explore the effect of the water clusters on the luminescence, we studied four complexes Zn(3-tzba)(2,2'-bipy)(H2O)·3H2O, Zn(3-tzba)(2,2'-bipy)(H2O)·2H2O, Zn(3-tzba)(2,2'-bipy)(H2O)·H2O, and Zn(3-tzba)(2,2'-bipy)(H2O). The results reveal that the presence of water should play an important role in the emission characteristics of the MOF. Also, the UV-vis absorption and emission spectra of Zn(3-tzba)(2,2'-bipy)(H2O)·3H2O are in good agreement with the experimental results.
- ArticleLi S, Guo J, Patel RA, Dadlani AL, Leblanc RM.Langmuir. 2013 May 14;29(19):5742-8.Triblock copolymer Pluronic F127 (PF127) has previously been demonstrated to disperse graphene oxide (GO) in electrolyte solution and block the hydrophobic interaction between GO and l-tryptophan and l-tyrosine. However, the nature of this interaction between PF127 and GO remains to be characterized and elucidated. In the present study, we aimed to characterize and understand the interaction between GO and PF127 using a 2-dimensional Langmuir monolayer methodology at the air-water interface by surface pressure-area isotherm measurement, stability, adsorption, and atomic force microscopy (AFM) imaging. Based on the observation of surface pressure-area isotherms, adsorption, and stability of PF127 and PF127/GO mixture at the air-water interface, GO is suggested to change the conformation of PF127 at the air-water interface and also drag PF127 from the interface to the bulk subphase. Atomic force microscopy (AFM) image supports this assumption, as GO and PF127 can be observed by spreading the subphase solution outside the compressing barriers, as shown in the TOC graphic.
- ArticleMalkowska M, Zubek J, Plewczynski D, Wyrwicz LS.PeerJ. 2018;6:e5742.MOTIVATION: The identification of functional sequence variations in regulatory DNA regions is one of the major challenges of modern genetics. Here, we report results of a combined multifactor analysis of properties characterizing functional sequence variants located in promoter regions of genes.
RESULTS: We demonstrate that GC-content of the local sequence fragments and local DNA shape features play significant role in prioritization of functional variants and outscore features related to histone modifications, transcription factors binding sites, or evolutionary conservation descriptors. Those observations allowed us to build specialized machine learning classifier identifying functional single nucleotide polymorphisms within promoter regions-ShapeGTB. We compared our method with more general tools predicting pathogenicity of all non-coding variants. ShapeGTB outperformed them by a wide margin (average precision 0.93 vs. 0.47-0.55). On the external validation set based on ClinVar database it displayed worse performance but was still competitive with other methods (average precision 0.47 vs. 0.23-0.42). Such results suggest unique characteristics of mutations located within promoter regions and are a promising signal for the development of more accurate variant prioritization tools in the future. - ArticleWang Y, Liu Y, Deng W, Fu F, Yan S, Yang H, Liu R, Geng J, Xu J, Wu Y, Ma J, Zhou J, Liu N, Jin Y, Xia R, Elias N, Lee RJ, Feldman AS, Blute ML, Colvin RB, Wu CL, Miao Y.Oncogene. 2020 08;39(35):5734-5742.BK polyomavirus (BKPyV)-associated cancer after transplantation has gained increasing attention. However, the role of BKPyV integration on oncogenesis is still unclear. In this study, next-generation virome capture sequencing of primary and metastatic tumors were performed in three patients with BKPyV-associated urothelial carcinoma after renal transplantation. As a result, a total of 332 viral integration sites were identified in the six tumors. Integration of BKPyV in both primary and metastatic tumors followed the mechanism of microhomology-mediated end joining mostly, since microhomologies between human and BKPyV genomes were significantly enriched in flanking regions of 84% of the integration sites. Viral DNA breakpoints were nonrandom and tended to assemble in large T gene, small T gene and viral protein 2 gene. There were three, one and one consensus integration sites between the primary and metastatic tumors, which affected LINC01924, eIF3c, and NEIL2 genes in the three cases respectively. Thus, we concluded that integration of BKPyV was a continuous process occurring in both primary and metastatic tumors, generating heterogenous tumor cell populations. Through this ongoing process, certain cell populations might have gained growth advantage or metastatic potential, as a result of viral integration either affecting the cellular genes where the viral DNA integrated to or altering the expression or function of the viral genes.
- ArticleFreitas N, Cunha C, Menne S, Gudima SO.J Virol. 2014 May;88(10):5742-54.UNLABELLED: A natural subviral agent of human hepatitis B virus (HBV), hepatitis delta virus (HDV), requires only the envelope proteins from HBV in order to maintain persistent infection. HBV surface antigens (HBsAgs) can be produced either by HBV replication or from integrated HBV DNA regardless of replication. The functional properties of the integrant-generated HBsAgs were examined using two human hepatocellular carcinoma-derived cell lines, Hep3B and PLC/PRF/5, that contain HBV integrants but do not produce HBV virions and have no signs of HBV replication. Both cell lines were able to support HDV replication and assembly/egress of HDV virions. Neither of the cell lines was able to produce substantial amounts of the pre-S1-containing HDV particles. HDV virions assembled in PLC/PRF/5 cells were able to infect primary human hepatocytes, while Hep3B-derived HDV appeared to be noninfectious. These results correlate with the findings that the entire open reading frame (ORF) for the large (L) envelope protein that is essential for infectivity is present on HBV RNAs from PLC/PRF/5 cells, while an L protein ORF that was truncated and fused to inverted precore sequences was found using RNAs from Hep3B cells. This study demonstrates for the first time that at least some of the HBV DNA sequence naturally integrated during infection can produce functional small and large envelope proteins capable of the formation of infectious HDV virions. Our data indicate that in vivo chronic HDV infection can persist in the absence of HBV replication (or when HBV replication is profoundly suppressed) if functional envelope proteins are supplied from HBV integrants.
IMPORTANCE: The study addresses the unique mechanism of HDV persistence in the absence of ongoing HBV replication, advances our understanding of HDV-HBV interactions, and supports the implementation of treatments directly targeting HDV for HDV/HBV-infected individuals. - ArticleSaeedi S, Moussa A, El-Sheimy N.Sensors (Basel). 2014 Mar 25;14(4):5742-67.Context-awareness is an interesting topic in mobile navigation scenarios where the context of the application is highly dynamic. Using context-aware computing, navigation services consider the situation of user, not only in the design process, but in real time while the device is in use. The basic idea is that mobile navigation services can provide different services based on different contexts-where contexts are related to the user's activity and the device placement. Context-aware systems are concerned with the following challenges which are addressed in this paper: context acquisition, context understanding, and context-aware application adaptation. The proposed approach in this paper is using low-cost sensors in a multi-level fusion scheme to improve the accuracy and robustness of context-aware navigation system. The experimental results demonstrate the capabilities of the context-aware Personal Navigation Systems (PNS) for outdoor personal navigation using a smartphone.
- ArticleZhang Y, Zhong H, Belić MR, Liu X, Zhong W, Zhang Y, Xiao M.Opt Lett. 2015 Dec 15;40(24):5742-5.We demonstrate the dual accelerating Airy-Talbot recurrence effect, i.e., the self-imaging of accelerating optical beams, by propagating a superposition of Airy beams with successively changing transverse displacements. The dual Airy-Talbot effect is a spontaneous recurring imaging of the input and of the input with alternating component signs. It results from the constructive interference of Airy wave functions, which is also responsible for other kinds of Airy beams, for example, Airy breathers. An input composed of finite-energy Airy beams also displays the dual Airy-Talbot effect, but it demands a large transverse displacement and diminishes fast along the propagation direction.
- ArticleLombana A, Battaglini N, Tsague-Kenfac G, Zrig S, Lang P.Chem Commun (Camb). 2016 Apr 28;52(33):5742-5.Through an all-solution process, we elaborate a host-guest system based on the self-assembly of a porphyrin derivative entrapped in a PTCDI-melamine porous network on Au(111). In contrast to the unpatterned molecular assembly, complementary STM and surface IR spectroscopy show that the host template modifies the packing and the tilt angle of porphyrin nanodomains.
- ArticleSantana MLC, Livi GJS, Santana TR, Silva PFD, Matos CLLB, Maciel CM, Faria-E-Silva AL.Braz Dent J. 2024;35:5742.This study evaluated the effects of surrounding and background shades on the color adjustment potential (CAP) and visual color match of two single-shade composites, Vittra APS Unique and Charisma Diamond One. Cylinder-shaped specimens were constructed, consisting of either single-shade composites alone (simple) or composites surrounded by the Forma material at shades A1 or A3 (dual). Simple specimens using only the Forma at the specified shades were also prepared. Color measurements of simple specimens were taken against a gray background using a spectrophotometer. For dual specimens, the color of the inner composite was measured against a gray or chromatic (the same shade as the outer composite) background. Color differences (ΔE00) between the single-shade composites and the A1/A3 composite were calculated. CAP was determined by comparing data from simple and dual specimens. Four experienced dentists scored the color match (perfect to unacceptable) for each specimen using a viewing booth illuminated by an illuminant D65. Data were analyzed with repeated-measures ANOVA and the Kruskal-Wallis test. The results showed that both single-shade composites showed the lowest color discrepancies when they were compared to A1 and A3. Using a chromatic background only significantly affected the CAP when the outer composite was A3. The visual analysis showed poor color matches between the single-shade and control chromatic composites, except for Charisma Diamond One surrounded by A1. In conclusion, the CAP values of the evaluated single-shade composites were impacted by both surrounding shade and background color, and the color match of these materials tended to be poor.
- ArticleFarias LPG, Pereira HAC, Anastacio EPZ, Minenelli FF, Teles GBDS.Einstein (Sao Paulo). 2020;18:eAI5742.
- ArticleWang H, Wang DM, Huang CZ.Analyst. 2015 Aug 21;140(16):5742-7.A simple and highly sensitive method for detecting lead ion (Pb(2+)) in biosamples was developed based on its displacement of potassium in G-Quadruplex DNAzyme, which can catalyze the luminol-H2O2 chemiluminescence (CL) reaction. By introducing a G-rich DNA sequence, PS2.M, which can fold into a G-quadruplex when binding with hemin in the presence of K(+) and act as a superior horseradish peroxidase (HRP) mimicking-enzyme, we found this DNAzyme can effectively catalyze the H2O2-mediated oxidation of luminol, resulting in strong CL emission. The K(+)-stabilized G-quadruplex, upon the addition of Pb(2+), is transformed into a Pb(2+)-stabilized G-quadruplex with higher stability but poor DNAzyme activity, sharply decreasing the CL readout signal. With this, a simple and sensitive detection method for Pb(2+) in biosamples such as human hairs was developed with a linear range of 0.4-10 nM Pb(2+) and a limit of detection (3σ) of 0.06 nM. Owing to the introduction of G-quadruplex DNAzyme, which was employed not only as a sensing unit but also as a catalyst in the chemiluminescent assay, this method holds great potential for clinical plumbism diagnosis by testing hair.
- ArticleRovnak J, Brewster CD, Quackenbush SL.J Virol. 2012 May;86(10):5742-51.Alterations in the functional levels of cyclin-dependent kinase-8 (CDK8) or its partner, cyclin C, have been clearly associated with cancers, including colon cancer, melanoma, and osteosarcoma. Walleye dermal sarcoma virus encodes a retroviral cyclin (RV-cyclin) that localizes to interchromatin granule clusters and binds CDK8. It also binds to the Aα subunit (PR65) of protein phosphatase 2A (PP2A). Binding to the Aα subunit excludes the regulatory B subunit, but not the catalytic C subunit, in a manner similar to that of T antigens of the small DNA tumor viruses. The expression of the RV-cyclin enhances the activity of immune affinity-purified CDK8 in vitro for RNA polymerase II carboxy-terminal domain (CTD) and histone H3 substrates. PP2A also enhances CDK8 kinase activity in vitro for the CTD but not for histone H3. The PP2A enhancement of CDK8 is independent of RV-cyclin expression and likely plays a role in the normal regulation of CDK8. The manipulation of endogenous PP2A activity by inhibition, amendment, or depletion confirmed its role in CDK8 activation by triggering CDK8 autophosphorylation. Although RV-cyclin and PP2A both enhance CDK8 activity, their actions are uncoupled and additive in kinase reactions. PP2A may be recruited to CDK8 in the Mediator complex by a specific PP2A B subunit or additionally by the RV-cyclin in infected cells, but the RV-cyclin appears to activate CDK8 directly and in a manner independent of its physical association with PP2A.