Today's Hours: 12:00pm - 8:00pm

Search

Did You Mean:

Search Results

  • Journal
    Print Access Request
    Location
    Version
    Call Number
    Items
  • Article
    Birkedal-Hansen H, Cobb CM, Taylor RE, Fullmer HM.
    Biochim Biophys Acta. 1976 Jun 07;438(1):273-86.
    Proteases capable of activating procollagenase from gingiva and from fibroblast and macrophage monolayer cultures were harvested from homogenates of canine tumor mast cells. The mast cell proteases lysed casein and Azocoll but not native collagen. In low salt concentrations the enzymes existed at high molecular weight complexes, which were dissociated by increasing the salt concentration above 1.0 M (NaCl, KCl). Gel filtration in 1.4 M KCl separated the protease activity into three peaks, all of which activated procollagenase. Two of the enzymes showed substrate specificities (hydrolysis of p-tosyl-L-arginine methyl ester and benzoyl-tyrosine ethyl ester) and reactive center reactivities similar to pancreatic trypsin and chymotrypsin. Based on gel filtration, apparent molecular weights of 160 000 (p-tosyl-L-arginine methyl ester esterase), 90 000 (main procollagenase activator) and 36 000 benzoyl-tyrosine ethyl ester esterase) were determined. Activation of procollagenase resulted in a 18-20 000 decrease of the molecular weight. The activation was directly related to the amount of activator added within certain limits. Further addition of activator resulted in proteolytic inactivation of collagenase.
    Digital Access Access Options
  • Book
    Gray, Hamish.
    Print 1968