Today's Hours: 8:00am - 10:00pm

Search

Did You Mean:

Search Results

  • Journal
    Digital Access Ovid v. 1-, 1958-
    Print Access Request
    Location
    Version
    Call Number
    Items
    Stored offsite. Please request print.
    196
  • Article
    Giffhorn F, Gottschalk G.
    J Bacteriol. 1975 Dec;124(3):1052-61.
    A previously unrecognized enzyme, citrate lyase deacetylase, has been purified about 140-fold from cell extracts of Rhodopseudomonas gelatinosa. It catalyzed the conversion of enzymatically active acetyl-S-citrate lyase into the inactive HS-form and acetate. The enzyme exhibited an optimal rate of inactivation at pH 8.1. Because of the instability of acetyl-S-citrate lyase at acidic and alkaline pH values, all assays were carried out at pH 7.2, where the spontaneous hydrolysis of the acetyl-S-citrate lyase was negligible and deacetylase showed 70% of the activity at pH 8.1. The apparent Km value for citrate lyase was 10(-7) M at pH 7.2 and 30 C. The activity of the deacetylase was restricted to the citrate lyase from R. gelatinosa. The corresponding lyases from Enterobacter aerogenes (formerly Klebsiella aerogenes) and Streptococcus diacetilactis were not deacetylated; likewise, thioesters such as acetyl-S coenzyme A, acetoacetyl-S coenzyme A, and N-acetyl-S-acetyl-cysteamine were also not hydrolyzed. Citrate lyase deacetylase was present in very small amounts in cells of R. gelatinosa grown with acetate or succinate; it was induced by citrate along with the citrate lyase. L-(+)-Glutamate strongly inhibited the deacetylase. Fifty percent inhibition was obtained at a concentration of 1.4 X 10(-4) L-(+)-glutamate. D-(-)-Glutamate, alpha-ketoglutarate, L-alpha-hydroxyglutarate, L-(-)-proline, and other metabolites were less effective.
    Digital Access Access Options