Today's Hours: 8:00am - 6:00pm

Search

Did You Mean:

Search Results

  • Database
    Digital Access Database
    Users must register
  • Article
    Chu H, Malone MM, Haldenwang WG, Walker JR.
    J Bacteriol. 1977 Oct;132(1):151-8.
    The physiological effects of incubation at nonpermissive temperatures of Escherichia coli mutants that carry a temperature-sensitive dnaZ allele [dnaZ(Ts)2016] were examined. The temperature at which the dnaZ(Ts) protein becomes inactivated in vivo was investigated by measurements of deoxyribonucleic acid (DNA) synthesis at temperatures intermediate between permissive and nonpermissive. DNA synthesis inhibition was reversible by reducing the temperature of cultures from 42 to 30 degrees C; DNA synthesis resumed immediately after temperature reduction and occurred even in the presence of chloramphenicol. Inasmuch as DNA synthesis could be resumed in the absence of protein synthesis, we concluded that the protein product of the dnaZ allele (Ts)2016 is renaturable. Cell division, also inhibited by 42 degrees C incubation, resumed after temperature reduction, but the length of time required for resumption depended on the duration of the period at 42 degrees C. Replicative synthesis of cellular DNA, examined in vitro in toluene-permeabilized cells, was temperature sensitive. Excision repair of ultraviolet light-induced DNA lesions was partially inhibited in dnaZ(Ts) cells at 42 degrees C. The dnaZ(+) product participated in the synthesis of both Okazaki piece (8-12S) and high-molecular-weight DNA. During incubation of dnaZ(Ts)(lambda) lysogens at 42 degrees C, prophage induction occurred, and progeny phage were produced during subsequent incubation at 30 degrees C. The temperature sensitivity of both DNA synthesis and cell division in the dnaZ(Ts)2016 mutant was suppressed by high concentrations of sucrose, lactose, or NaCl. Incubation at 42 degrees C was neither mutagenic nor antimutagenic for the dnaZ(Ts) mutant.
    Digital Access Access Options