Today's Hours: 8:00am - 8:00pm

Search

Did You Mean:

Search Results

  • Journal
    Summary: Leonardo is today's leading international peer-reviewed journal on the use of contemporary science and technology in the arts and music and, increasingly, the application and influence of the arts and humanities on science and technology.
    Digital Access
    Provider
    Version
  • Article
    Zeiske W, Van Driessche W.
    J Membr Biol. 1979 May 07;47(1):77-96.
    The reaction of abdominal skins of the frog species Rana temporaria on mucosal K+-containing solutions was studied in an Ussing-type chamber by recording transepithelial potential difference (PD), short-circuit current (SCC) and conductance (G). With Na-Ringer's as serosal medium, a linear correlation between PD and the logarithm of the mucosal K+-concentration ([K]o) was obtained. The K+-dependent SCC saturated with increasing [K]o, and could quickly and reversibly be depressed by addition of Rb+, Cs+, and H+. Li+, Na+, and NH4+ did not influence K+ current. A large scatter was obtained for kinetic parameters like the slope of the PD-log[K]o-line (18--36.5 mV/decade), the apparent Michaelis constant (13--200 mM), and the maximal current of the saturable SCC (6--50 microa . cm-2), as well as for the degree of inhibition by Cs+ ions. This seemed to be caused by a time-dependent change during long time exposure to high [K]o (more than 30 sec), thereby inducing a selectivity loss of K+-transporting structures, together with an increase in SCC and G and a decrease in PD. Short time exposure to K+-containing solutions showed a competitive inhibition of K+ current by Cs+ ions, and a Michaelis constant of 6.6 mM for the inhibitory action of Cs+. Proton titration resulted in a decrease of K+ current at pH less than 3. An acidic membrane component (apparent dissociation constant 2.5 x 10(-3) M) is virtually controlling K+ transfer. Reducing the transepithelial K+-concentration gradient by raising the serosal potassium concentration was accompanied by the disappearance of SCC and PD.
    Digital Access Access Options