Filters applied:
Did You Mean? ?
one result

 

  • Book
    Richard S. Gaster.
    Digital2011
    Nanotechnology has the unique capability of manipulating and sensing matter at the molecular scale with unprecedented speed, sensitivity, and throughput. The medical application of nanotechnology, nanomedicine, has leveraged nanoscience tools for the advancement of medical diagnostics, therapy, and basic science research. In this work, arrays of magnetically responsive nanosensors, originally developed for use as read heads in computer hard disk drives, have been utilized to achieve in-depth proteomic studies for the advancement of medical diagnostics and therapy. In particular, this dissertation will focus on the following four topics of applying magnetic nanotechnology to science and medicine. First, the application of magnetic nanosensor arrays to early cancer diagnostics and monitoring response to chemotherapy. The utility of magnetic nanosensors as a molecular diagnostics tool capable of profiling a patient's disease state and leveraging a patient's unique molecular signature will be demonstrated. Second, this report will discuss a novel mathematical model expressly developed to describe the kinetic interactions of magnetically labeled biomolecules binding to capture agents immobilized on a surface. Third, a novel autoassembly immunoassay capable of screening for antibody cross-reactivity in a high-density, high-fidelity, and rapid manner will be described. Finally, this report will address the utility of the autoassembly immunoassay in conjunction with a miniaturized magnetic nanosensor platform for point-of-care diagnostics in a cost-effective and easy-to-use (e.g. wash-free) process that can make a significant contribution to global health.